[1]
Reed, R.C., The superalloys: fundamentals and applications. 2008: Cambridge university press.
Google Scholar
[2]
Rao, M.N.J.T.o.t.I.I.o.M., Factors influencing the notch rupture life of superalloy 718. 2010. 63(2-3): pp.363-367.
Google Scholar
[3]
Oblak, J., D. Paulonis, and D.J.M.T. Duvall, Coherency strengthening in Ni base alloys hardened by DO 22γ " precipitates. 1974. 5(1): p.143.
DOI: 10.1007/bf02642938
Google Scholar
[4]
Sundararaman, M., P. Mukhopadhyay, and S.J.A.M. Banerjee, Deformation behaviour of γ "strengthened Inconel 718. 1988. 36(4): pp.847-864.
DOI: 10.1016/0001-6160(88)90139-3
Google Scholar
[5]
Qin, H., et al., Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy. Materials Science and Engineering: A, 2018. 728: pp.183-195.
DOI: 10.1016/j.msea.2018.05.016
Google Scholar
[6]
Qin, H., et al., Influence of stress on γ" precipitation behavior in Inconel 718 during aging. Journal of Alloys and Compounds, 2018. 740: pp.997-1006.
DOI: 10.1016/j.jallcom.2018.01.030
Google Scholar
[7]
Cheong, K.S., E.P. Busso, and A. Arsenlis, A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts. International Journal of Plasticity, 2005. 21(9): pp.1797-1814.
DOI: 10.1016/j.ijplas.2004.11.001
Google Scholar
[8]
Busso, E., et al., Gradient-dependent deformation of two-phase single crystals. 2000. 48(11): pp.2333-2361.
DOI: 10.1016/s0022-5096(00)00006-5
Google Scholar
[9]
Fleck, N., et al., Strain gradient plasticity: theory and experiment. 1994. 42(2): pp.475-487.
Google Scholar
[10]
Hall, E.O., The deformation and ageing of mild steel: II characteristics of the Lüders deformation. Proceedings of the Physical Society. Section B, 1951. 64(9): p.742.
DOI: 10.1088/0370-1301/64/9/302
Google Scholar
[11]
Roters, F., et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 2010. 58(4): pp.1152-1211.
DOI: 10.1016/j.actamat.2009.10.058
Google Scholar
[12]
Cheong, K.-S. and E.P. Busso, Discrete dislocation density modelling of single phase FCC polycrystal aggregates. Acta Materialia, 2004. 52(19): pp.5665-5675.
DOI: 10.1016/j.actamat.2004.08.044
Google Scholar
[13]
Li, D.F., B.J. Golden, and N.P. O'Dowd, Multiscale modelling of mechanical response in a martensitic steel: A micromechanical and length-scale-dependent framework for precipitate hardening. Acta Materialia, 2014. 80: pp.445-456.
DOI: 10.1016/j.actamat.2014.08.012
Google Scholar
[14]
Abaqus, V.J.D.S.S.C., 6.14 Documentation. 2014. 651.
Google Scholar
[15]
Qin, H.L. Research on the behavior and mechanism of γ "variant selection in GH4169 alloy.2019. Central Iron and Steel Research Institute.(In Chinese).
Google Scholar
[16]
Knezevic, M. and S. Ghorbanpour, Modeling Tensile, Compressive, and Cyclic Response of Inconel 718 Using a Crystal Plasticity Model Incorporating the Effects of Precipitates, in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications. 2018. pp.655-668.
DOI: 10.1007/978-3-319-89480-5_43
Google Scholar
[17]
Cruzado, A., et al. Microtesting and Crystal Plasticity Modelling of IN718 Superalloy Grains. in 8th International Symposium on Superalloy 718 and Derivatives. 2014. Wiley Online Library.
DOI: 10.7449/2014/superalloys_2014_897_907
Google Scholar
[18]
Xiong, L.X. Three dimensional EBSD-based microstructure reconsturction and micro-mechanical for GH4169 superalloy. 2019. Harbin Institute of Technology. (In Chinese).
Google Scholar