[1]
H. Qin, Z. Bi, H. Yu, G. Feng, J. Du, J. Zhang, Influence of stress on γ" precipitation behavior in Inconel 718 during aging, Journal of Alloys and Compounds 740 (2018) 997-1006.
DOI: 10.1016/j.jallcom.2018.01.030
Google Scholar
[2]
H. Qin, Z. Bi, H. Yu, G. Feng, R. Zhang, X. Guo, H. Chi, J. Du, J. Zhang, Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy, Materials Science and Engineering: A 728 (2018) 183-195.
DOI: 10.1016/j.msea.2018.05.016
Google Scholar
[3]
G. Salerno, C. Bennett, W. Sun, A. Becker, N. Palumbo, J. Kelleher, S.Y. Zhang, On the interaction between welding residual stresses: a numerical and experimental investigation, International Journal of Mechanical Sciences 144 (2018) 654-667.
DOI: 10.1016/j.ijmecsci.2018.04.055
Google Scholar
[4]
M. Ahmadzadeh, B. Farshi, H. Salimi, A.H. Fard, Residual stresses due to gas arc welding of aluminum alloy joints by numerical simulations, International journal of material forming 6(2) (2013) 233-247.
DOI: 10.1007/s12289-011-1081-4
Google Scholar
[5]
P. Pagliaro, M.B. Prime, H. Swenson, B. Zuccarello, Measuring multiple residual-stress components using the contour method and multiple cuts, Experimental Mechanics 50(2) (2010) 187-194.
DOI: 10.1007/s11340-009-9280-3
Google Scholar
[6]
F. Kandil, J. Lord, A. Fry, P. Grant, A review of residual stress measurement methods, A Guide to Technique Selection, NPL, Report MATC (A) 4 (2001).
Google Scholar
[7]
B. Vrancken, V. Cain, R. Knutsen, J. Van Humbeeck, Residual stress via the contour method in compact tension specimens produced via selective laser melting, Scripta Materialia 87 (2014) 29-32.
DOI: 10.1016/j.scriptamat.2014.05.016
Google Scholar
[8]
J. Chen, Experimental and modeling investigations of the heat-treatment residual stress evolution in gh4169 superalloy, Harbin Institute of Technology, Harbin Institute of Technology, (2019).
Google Scholar
[9]
Z. Bi, H. Qin, Z. Dong, X. Wang, M. Wang, Y. Liu, J. Du, J. Zhang, Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings, Acta Metall Sin 55(9) (2019) 1160-1174.
Google Scholar
[10]
R. Song, H. Qin, Z. Bi, J. Zhang, E. Busso, D. Li Experimental and Numerical Investigations of Dynamic Strain Ageing Behaviour in Solid Solution Treated Inconel 718 Superalloy, Engineering Computations (2020).
DOI: 10.1108/ec-01-2020-0006
Google Scholar
[11]
C. Hale, W. Rollings, M. Weaver, Activation energy calculations for discontinuous yielding in Inconel 718SPF, Materials Science and Engineering: A 300(1-2) (2001) 153-164.
DOI: 10.1016/s0921-5093(00)01470-2
Google Scholar
[12]
S. Semiatin, P. Fagin, B. Streich, R. Goetz, V. Venkatesh, The High-Temperature Bauschinger Effect in Alloy 718, Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, Springer, 2018, pp.957-975.
DOI: 10.1007/978-3-319-89480-5_64
Google Scholar
[13]
D. Dye, K. Conlon, R. Reed, Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718, Metallurgical and Materials Transactions A 35(6) (2004) 1703-1713.
DOI: 10.1007/s11661-004-0079-7
Google Scholar
[14]
H. Qin, Research on the Behavior and Mechanism of γ" Variant Selection in GH4169 Alloy, Central Iron and Steel Research Institute, Beijing, (2019).
Google Scholar
[15]
A.A. Bhatti, Z. Barsoum, H. Murakawa, I. Barsoum, Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion, Materials & Design (1980-2015) 65 (2015) 878-889.
DOI: 10.1016/j.matdes.2014.10.019
Google Scholar
[16]
E.P. Busso, A continuum theory for dynamic recrystallization with microstructure-related length scales, International Journal of Plasticity 14(4-5) (1998) 319-353.
DOI: 10.1016/s0749-6419(98)00008-4
Google Scholar
[17]
E.P. Busso, F.A. McClintock, A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy, International Journal of Plasticity 12(1) (1996) 1-28.
DOI: 10.1016/s0749-6419(95)00041-0
Google Scholar
[18]
Y. Wang, W.Z. Shao, L. Zhen, L. Yang, X.M. Zhang, Flow behavior and microstructures of superalloy 718 during high temperature deformation, Materials Science and Engineering: A 497(1-2) (2008) 479-486.
DOI: 10.1016/j.msea.2008.07.046
Google Scholar
[19]
P. McCormick, Theory of flow localisation due to dynamic strain ageing, Acta Metallurgica 36(12) (1988) 3061-3067.
DOI: 10.1016/0001-6160(88)90043-0
Google Scholar
[20]
J. Chen, R. Song, H. Qin, Z. Bi, J. Zhang, D. Li, Multi-scale experiment and simulation of dynamic strain ageing effect in Inconel 718 superalloy, 12th International Congress on Thermal Stresses, (2019).
Google Scholar
[21]
H. Sun, Experimental and modelling study on the residual stress in gh4169 superalloy Harbin Institute of Technology, Harbin Institute of Technology, (2019).
Google Scholar