The Influences of Third Alloying Element on the Internal Friction Behavior and the Mechanical Properties in the Water Quenched Ti-12Mo Alloys

Article Preview

Abstract:

The influences of third alloying element on the internal friction behavior and the mechanical properties in the water quenched Ti-12Mo alloys were investigated using multifunctional internal friction apparatus and mechanical testing machine, respectively. The two relaxational internal friction peaks that are named as P1 and P2 peaks were found in the water quenched Ti-12Mo alloys. Third alloying element has influences on the P1 and P2 peaks. In addition, the young modulus and yield strength are also influenced by the addition of Third alloying element.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 315)

Pages:

56-60

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, S. Hanada. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys, Mater. Trans., 43(2002) 2978-2983.

DOI: 10.2320/matertrans.43.2978

Google Scholar

[2] T. Maeshima, M. Nishida, Shape memory properties of Biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys, Mater. Trans., 45(2004)1096–1100.

DOI: 10.2320/matertrans.45.1096

Google Scholar

[3] Xingfeng Zhao, Mitsuo Niinomi, Masaaki Nakai, Junko Hieda. Beta type Ti-Mo alloys with changeable Young,s modulus for spinal fixation applications. Acta Biomaterialia, 8 (2012) 1990-1997.

DOI: 10.1016/j.actbio.2012.02.004

Google Scholar

[4] J.L. Xu, S.C. Tao, L.Z. Bao, J.M. Luo, Y.F. Zheng. Effect of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys, Materials Science & Engineering C, 97 (2019) 156-165.

DOI: 10.1016/j.msec.2018.12.028

Google Scholar

[5] Y.L. Zhou, D. M. Luo. Corrosion behavior of cold-rolled and heat treated Ti-Mo alloys. J. Alloys Compd., 509 (2011) 6267-6272.

DOI: 10.1016/j.jallcom.2011.03.045

Google Scholar

[6] R. P. Kolli, W. J. Joost and S. Ankem. Phase stability and stress-induced transformations in Beta Titanium alloys. The minerals, Metals & Materials Society, 67 (2015) 1273-1278.

DOI: 10.1007/s11837-015-1411-y

Google Scholar

[7] Xueyin Zhou, Xiaohua Min. Effect of grain boundary angle on {332}<113> twinning transfer behavior in β-type Ti–15Mo–5Zr alloy. Journal of Material Science, 53 (2018) 8604-8618.

DOI: 10.1007/s10853-018-2167-x

Google Scholar

[8] Xueyin Zhou, Xiaohua Min, Satoshi Emura, Koichi Tsuchiya. Accommodative {332}<113> primary and secondary twinning in a slightly deformed β-type Ti-Mo titanium alloy. Materials Science and Engineering A, 584 (2017) 456-465.

DOI: 10.1016/j.msea.2016.12.025

Google Scholar

[9] N. T. C. Oliveira, G. Aleixo, R. Caram, A.C. Guastaldi. Development of Ti-Mo alloys for biomedical applications using AC: Microstructure and electrochemical properties. Mat. Sci. Eng. A, 452-453 (2007) 727-731.

DOI: 10.1016/j.msea.2006.11.061

Google Scholar

[10] L. Usategui, M.L. Nó, S. Mayer, H. Clemens, J. San Juan. Internal friction and atomic relaxation processes in an intermetallic Mo-rich Ti-44Al-7Mo (γ+β0) model alloy Sci. Eng. A, 521-522 (2017) 495-502.

DOI: 10.1016/j.msea.2017.06.014

Google Scholar

[11] J.R.S. Martins JR, R.O. Araújo, R.A. Nogueira, C.R. Grandini. Internal friction and microstructure of Ti and Mo alloys containing oxygen. Arch. Metall. Mater., 61 (2016) 25-30.

DOI: 10.1515/amm-2016-0011

Google Scholar

[12] Z. C. Zhou, Y. F. Yang, S. Y. Gu, X. B. Zhu, et al. The Atomic Defect Relaxation Processes in the Ti­Mo Alloys, Mater. Trans., 61 (2020) 1051-1057.

Google Scholar

[13] J. L. Murray, Phase Diagram of Binary Titanium Alloys, Materials Park, ASM, Ohio (1987).

Google Scholar

[14] X. H. Min, S. Emura, L. Zhang, K. Tsuzaki, Effect of Fe and Zr addition on ω phase formation in β-type Ti-Mo alloys, 497 (2008) 74-78.

DOI: 10.1016/j.msea.2008.06.018

Google Scholar

[15] O. Florêncio, F. W. J. Botta, C. R. Grandini, et al. Anelastic behaviour in Nb-Ti alloys containing interstitial elements. J. Alloys Comp., 211-212 (1994) 37-40.

DOI: 10.1016/0925-8388(94)90442-1

Google Scholar

[16] A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, Now York and London (1972).

Google Scholar