Damping Performance of Material Candidates for Service at 350K

Article Preview

Abstract:

Vibration systems require the damping materials operating at high service temperature. In this paper, damping performance of HT100, M2052 and S316L at 350K were evaluated by applying different frequencies, strain amplitudes and heating rates. It is found that the internal friction dependence of frequency of HT100, M2052 and S316L all show a characteristic of Check function, and the resonance frequency has a negative linear correlation with the material physical parameters. The strain amplitude as well as heating rate has no obvious effect on the resonance frequencies of the materials, but significantly enhance the internal friction of the interface damping alloys such as M2052 and HT100, but small on single-phase alloys such as S316L. The internal friction mechanism for HT100 and M2052 are of static hysteresis at 350K, and HT100 and M2052 are applicable candidates for working at temperatures around 350K from the viewpoint of vibration reduction.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 315)

Pages:

43-49

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.X. Yin, Damping behavior characterization of the M2052 alloy aimed for practical application, Acta Metall. Sin. (Chin. Ed.). 39 (2003) 1139-1144.

Google Scholar

[2] B. Yang, Z. Luo, B. Yuan, J.W. Liu, Y. Gao, High damping of lightweight TiNi-Ti2Ni shape memory composites for wide temperature range usage, J. Mater. Eng. Perform. 26 (2017) 4970-4976.

DOI: 10.1007/s11665-017-2947-5

Google Scholar

[3] W.B. Liu, N. Li, Z.Y. Zhong, J.Z. Yan, D. Li, Y. Liu, X.C. Zhao, S.Q. Shi, Novel cast-aged MnCuNiFeZnAl alloy with good damping capacity and high usage temperature toward engineering application, Mater. Des. 106 (2016) 45-50.

DOI: 10.1016/j.matdes.2016.05.098

Google Scholar

[4] I.K. Arhipov, I.S. Golovin, S.A. Golovin, H.R. Sinning, Damping caused by microplasticity in porous 316L steels, Philos. Mag. 85 (2005) 1557-1574.

DOI: 10.1080/14786430412331331952

Google Scholar

[5] M.A.O. Fox, R.D. Adams, Correlation of the damping capacity of cast iron with its mechanical properties and microstructure, J. Mech. Eng. Sci. 15 (1973) 81-94.

DOI: 10.1243/jmes_jour_1973_015_017_02

Google Scholar

[6] P. Millet, R. Schaller, W. Benoit, High damping in grey cast iron, J. Phys. Colloq. 46 (1985) 405-408.

DOI: 10.1051/jphyscol:19851091

Google Scholar

[7] X.B. Liu, S. Takamori, Y. Osawa, The effect of aluminum addition on the damping capacity of cast iron, J. Mater. Sci. Lett. 39 (2004) 6097-6099.

DOI: 10.1023/b:jmsc.0000041710.39427.e0

Google Scholar

[8] Z.Y. Zhong, W.B. Liu, N. Li, J.Z. Yan, J.W. Xie, D. Li, Y. Liu, X.C. Zhao, S.Q. Shi, Mn segregation dependence of damping capacity of as-cast M2052 alloy, Mater. Sci. Eng. A. 660 (2016) 97-101.

DOI: 10.1016/j.msea.2016.02.084

Google Scholar

[9] Q.C. Tian, F.X. Yin, T. Sakaguchi, K. Ngai, Reverse transformation behavior of a prestrained MnCu alloy, Acta Mater. 54 (2006) 1805-1813.

DOI: 10.1016/j.actamat.2005.12.007

Google Scholar

[10] M.G. Kwoon, C.Y. Kang, Correlationship between tensile properties and damping capacity of 316L stainless steel, Korean J. Mater. Res. 24 (2014) 1-5.

DOI: 10.3740/mrsk.2014.24.1.1

Google Scholar

[11] Z.C. Jiang, S.B. Zhang, Q.C. Tian, P.G. Ji, F.X. Yin, Phenomenological representation of mechanical spectroscopy of high damping MnCuNiFe alloy, Mater. Sci. Technol. 36 (2020) 743-749.

DOI: 10.1080/02670836.2020.1738057

Google Scholar

[12] Q.C. Tian, F.X. Yin, T. Sakaguchi, K. Nagai, Internal friction behavior of twin boundaries in tensile-deformed Mn-15 at.% Cu alloy, Mater. Sci. Eng. A. 442 (2006) 433-438.

DOI: 10.1016/j.msea.2006.04.135

Google Scholar

[13] R.H. Shi, F. Lin, N.B. Zeng, F.S. Qin, High damping cast iron and it's damping machanism, J. Shanghai Jiaotong Univ. 25 (1991) 92-98.

Google Scholar

[14] F.X. Yin, T. Sakaguchi, Q.C. Tian, A. Sakurai, K. Nagai, The twinning microstructure and damping behavior in Mn–30Cu (at%) alloy, Mater. Trans. 46 (2005) 2164-2168.

DOI: 10.2320/matertrans.46.2164

Google Scholar

[15] R.K. Song, F. Ye, C.X. Yang, S.J. Wu, Effect of alloying elements on microstructure, mechanical and damping properties of Cr-Mn-Fe-V-Cu high-entropy alloys, J. Mater. Sci. Technol. (Shenyang, China). 34 (2018) 48-55.

DOI: 10.1016/j.jmst.2018.02.026

Google Scholar

[16] Z.C. Jiang, Q.C. Tian, Z.M. Ren, P.G. Ji, J.H. Feng, F.X. Yin, Development and characterization of a MnCu-based high damping alloy plate, IOP Conf. Ser.: Mater. Sci. Eng. 542 (2019) 012020.

DOI: 10.1088/1757-899x/542/1/012020

Google Scholar

[17] Q.C. Tian, F.X. Yin, T. Sakaguchi, K. Nagai, Internal friction behavior of the reverse martensitic transformation in deformed Mn-Cu alloy, Mater. Sci. Eng. A. 438 (2006) 374-378.

DOI: 10.1016/j.msea.2005.12.058

Google Scholar