[1]
Yiqiang Chen, Zezhong Zhang, Zhen Chen, Amalia Tsalanidis, Matthew Weyland, Scott Findlay, Leslie J. Allen, Jiehua Li, Nikhil V. Medhekar, Laure Bourgeois,The enhanced theta-prime (θ') precipitation in an Al-Cu alloy with trace Au additions,Acta Materialia, 125 (2017) 340-350.
DOI: 10.1016/j.actamat.2016.12.012
Google Scholar
[2]
V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy, Mater. Sci. Eng. A 502 (2009)45–53.
DOI: 10.1016/j.msea.2008.11.024
Google Scholar
[3]
Zeng, Y.-S.; Huang, X.; Huang, S. The research situation and the developing tendency of creep age forming technology. J. Plast. Eng. 15 (2008) 1–8.
Google Scholar
[4]
HEINZ A, HASZLER A, KEIDEL C. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 280(1) (2000) 102−107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[5]
Kai WANG, Li-hua ZHAN, You-liang YANG, Zi-yao MA, Constitutive modeling and springback prediction of stress relaxation age forming of pre-deformed 2219 aluminum alloy, Transactions of Nonferrous Metals Society of China, 29 (2019) 1152-1160.
DOI: 10.1016/s1003-6326(19)65023-5
Google Scholar
[6]
Zhongyu Yang, Jin Zhang, Xuebo Guo, Pengfei Ji. Research Progress on Aluminum Alloy Texture and Test Analysis[J]. Journal of Netshape Forming Engineering, 5(6) (2013) 1-6.
Google Scholar
[7]
Cho K K , Kwun S I , Chung Y H , et al. Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet[J]. Scripta Materialia, 40(6) (1999) 651-657.
DOI: 10.1016/s1359-6462(98)00481-3
Google Scholar
[8]
H. Hargarter M.T. Lyttle E.A. Starke. Effects of preferentially aligned precipitates on plastic anisotropy in Al-Cu-Mg-Ag and Al-Cu alloys[J]. Materials Science & Engineering A, 257(1) (1998).
DOI: 10.1016/s0921-5093(98)00826-0
Google Scholar
[9]
Yongqian Xu, Lihua Zhan, Minghui Huang, Chunhui Liu, Xun Wang, Anisotropy in creep-ageing behavior of textured Al-Cu-Mg alloy, International Journal of Lightweight Materials and Manufacture, 1 (2018) 40-46.
DOI: 10.1016/j.ijlmm.2018.03.001
Google Scholar
[10]
E.I. Galindo-Nava, C.M.F. Rae, Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited, Materials Science and Engineering: A, 651 (2016) 116-126.
DOI: 10.1016/j.msea.2015.10.088
Google Scholar
[11]
J.F. Nie, B.C. Muddle,Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates, Acta Materialia, 56 (2008) 3490-3501.
DOI: 10.1016/j.actamat.2008.03.028
Google Scholar
[12]
Z. Ma, L. Zhan, C. Liu, L. Xu, Y. Xu, P. Ma, J. Li, Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: Experiments and modeling, International Journal of Plasticity, 110 (2018) 183-201.
DOI: 10.1016/j.ijplas.2018.07.001
Google Scholar
[13]
J.J. Bhattacharyya, B. Bittmann, S.R. Agnew,The effect of precipitate-induced backstresses on plastic anisotropy: Demonstrated by modeling the behavior of aluminum alloy, 7085,International Journal of Plasticity, 117 (2019) 3-20.
DOI: 10.1016/j.ijplas.2018.04.011
Google Scholar
[14]
J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat, D.Y. Yang, Earing predictions based on asymmetric nonquadratic yield function, International Journal of Plasticity, 16 (2000) 1075-1104.
DOI: 10.1016/s0749-6419(99)00086-8
Google Scholar