[1]
E.I. Isachenkov, Razvitie tekhnologicheskikh protsessov shtampovki jelastichnymi i zhidkostnymi sredami. Kuznechno-shtampovochnoe proizvodstvo, (9) (1981).
Google Scholar
[2]
V.A. Glushchenkov, Spetsial'nye vidy shtampovki. Chast' 1. Shtampovka jelastichnymi sredami: ucheb. Posobie, Samara: Izd-vo Samar, gos. ajerokosm, un-ta, (2008).
Google Scholar
[3]
M. Liewald, J. H. C. de Souza, New developments on the use of polymeric materials in sheet metal forming, Production Engineering Research and Development, 2 (1) (2008) 63-72.
DOI: 10.1007/s11740-008-0077-5
Google Scholar
[4]
P. Gupta, J. Lee, Rapid prototyping in die manufacturing, The Society of manufacturing Engineers Conference. California, (1993) 11-13.
Google Scholar
[5]
M.A. Zlenko, A.A. Popovich, I.N. Mutylina, Additivnye tekhnologii v mashinostroenii, Izd-vo SPbPU, (2013).
Google Scholar
[6]
S. Henshaw, What is 3D printing?, Information on: http://3dprinting.com/what-is-3d-printing/ (Accessed: 03.03.2019).
Google Scholar
[7]
J. Excell, The rise of additive manufacturing, The Engineer. Information on: http://www.theengineer.co.uk/in-depth/the-big-story/the-rise-of-additive-manufacturing/1002560.article (Accessed: 02.02.2019).
Google Scholar
[8]
A. Rosochowski, A. Matuszak, Rapid tooling: the state of the art, Journal of Materials Processing Technology, 106(1/3) (2000) 191-198.
DOI: 10.1016/s0924-0136(00)00613-0
Google Scholar
[9]
Z.H. Du, C.K. Chua, Y.S. Chua, K. G. Loh-Lee, S. T. Lim, Rapid sheet metal manufacturing, Part 1: indirect rapid tooling, International Journal of Advanced Manufacturing Technology, 19(1) (2002) 411-417.
DOI: 10.1007/s001700200042
Google Scholar
[10]
C.M. Cheah, C.K. Chua, C.W. Lee, S T. Lim, K.H. Eu, L.T. Lin, Rapid sheet metal manufacturing, Part 2: direct rapid tooling, Advanced Manufacturing Technology, 19(7) (2002) 510-515.
DOI: 10.1007/s001700200054
Google Scholar
[11]
P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit, G. Harlow. Progress Toward an Integration of Process–Structure– Property–Performance Models for 'Three-Dimensional (3-D) Printing', of Titanium Alloys, JOM, 66(7) (2014) 1299-1309.
DOI: 10.1007/s11837-014-1007-y
Google Scholar
[12]
I. Durgun, Sheet metal forming using FDM rapid prototype tool, Rapid Prototyping Journal, 21/4 (2015) 412–422.
DOI: 10.1108/rpj-01-2014-0003
Google Scholar
[13]
G. Leacock, G. Cowan, M. Cosby, G. Volk, D. McCracken, D. Brown, Structural and Frictional Performance of Fused Deposition Modelled Acrylonitrile Butadiene Styrene (P430) with a View to Use as Rapid Tooling Material in Sheet Metal Forming, Key Engineering Materials, 639 (2015) 325-332.
DOI: 10.4028/www.scientific.net/kem.639.325
Google Scholar
[14]
Stratasys Ltd., Metal Hydroforming 3D Printing for Forming Tools, Information on: http://www.stratasys.com/solutions/additive-manufacturing/tooling/metal-hydroforming (Accessed: 02.03.2019).
Google Scholar
[15]
I.Yu. Kononov, L.B. Aksenov, Ispol'zovanie plastikovykh shtampov, izgotovlennykh 3D pechat'yu, v obrabotke metallov davleniem. Zagotovitel'nye proizvodstva v mashinostroenii (Kuznechno-shtampovochnoe, litejnoe i drugie proizvodstva), 9 (2016) 22-24.
Google Scholar
[16]
J. Prusa, Prusa i3 Documentation,, Information on: http://reprap.org/wiki/Prusa_i3 (Accessed: 02.02.2019).
Google Scholar
[17]
REC® LLC, Acrylonitrile butadiene styrene properties,, Information on: http://www.rec3d.ru (Accessed: 27.10.2017).
Google Scholar
[18]
Simufact Simulation of Manufacturing: Simufactforming. Information on: https://www.simufact.com/module-hot-forging.html (Accessed: 05.10.2019).
Google Scholar
[19]
J. Gilbert Kaufman, Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and low temperatures,, ASM International®, 305 p.
Google Scholar