The Way of Utilization of Fused Corundum Dust Waste for the High-Alumina Chamotte Production

Article Preview

Abstract:

High-alumina chamotte with an Al2O3 content of more than 62% is a desirable raw material to produce high-alumina refractories. The production of high-alumina aggregate (chamotte) is carried out in various ways, using plastic or semi-dry technology for briquetting from commercial alumina and refractory clay. When grinding fused corundum, the dust containing 93–95% Al2O3 is formed; it is currently a substandard material. It is of interest to involve this waste product in the production of high-alumina chamotte. The developed technology allows obtaining the desirable material and utilizing production waste. In this project the briquetting parameters to produce high-alumina chamotte using corundum waste and refractory enriched kaolin were determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

100-104

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Li, H.Z. Gu, H.Z. Zhao, Naihuo Cailiaoxue (Refractories), Metallurgical Industry Press, Beijing, (2010).

Google Scholar

[2] C.A. Schacht, Refractoires Handbook, Marcel Dekker, Inc., New York, (2004).

Google Scholar

[3] F. Cardarelli, Materials Handbook, Springer International Publishing AG, part of Springer Nature, (2018).

Google Scholar

[4] É.V. Degtyareva, I.I. Kabakova, G.R. Kotel'nikov, et al., High-alumina refractories from a waste product of the chemical industry, Refractories 17 (1976) 235-240.

DOI: 10.1007/bf01285185

Google Scholar

[5] I.S. Kainarskii, More efficient utilization of alumina in refractories production, Refractories 19 (1978) 503-508.

DOI: 10.1007/bf01284277

Google Scholar

[6] A.K. Karklit and G.M. Katorgin, High-alumina raw materials in Russia, Refractories 36 (1995) 122-126.

DOI: 10.1007/bf02307186

Google Scholar

[7] K.A. Mikhailova, N.V. Pitak, S.F. Korsunskaya, et al., Use of Novoselits kaolin for the production of high-alumina refractories, Refractories 10 (1969) 531-535.

DOI: 10.1007/bf01295327

Google Scholar

[8] V.A. Perepelitsyn, V.A. Koroteev, V.M. Rytvin, et al., High-alumina technogenic raw material, Refractories and Industrial Ceramics 52 (2011) 84-94.

DOI: 10.1007/s11148-011-9374-1

Google Scholar

[9] D.I. Gavrish, A.K. Karklit, G.A. Gil'shtein, A.V. Zhukov, Improving the range of refractories, Refractories and Industrial Ceramics 18 (1977) 621-626.

DOI: 10.1007/bf01280550

Google Scholar

[10] O.V. Gavshina, V.A. Doroganov, E.A. Doroganov, et al., High-alumina mixes based on molded bauxite suspensions, Refractories and Industrial Ceramics 60 (2019) 350-354.

DOI: 10.1007/s11148-019-00365-3

Google Scholar

[11] A. Khlystov, V. Shirokov, D. Isaev, et al., Heat-resistant binders synthesis with application of aluminacontaining and high-alumina waste, IOP Conf. Series: Materials Science and Engineering 661 (2019) 012104.

DOI: 10.1088/1757-899x/661/1/012104

Google Scholar

[12] A.K. Karklit, S.G. Dolgikh, and A.V. Kakhmurov, Electromelted corundum of Northern Onega bauxites and refractories based on it, Refractories and Industrial Ceramics 34 (1993) 477-485.

DOI: 10.1007/bf01295028

Google Scholar

[13] I.D. Kashcheev, K.G. Zemlyanoi, and I.A. Pavlova, Sintering of ceramic materials based on bauxitized clay of the North-Onezh deposit. Part 1. Effect of charge grain size composition, Refractories and Industrial Ceramics 59 (2018) 346-349.

DOI: 10.1007/s11148-018-0234-0

Google Scholar

[14] I.D. Kashcheev, K.G. Zemlyanoi, and I.A. Pavlova, Sintering of ceramic materials based on bauxitized clay of the North-Onezh deposit. Part 2. Effect of sintering additions, Refractories and Industrial Ceramics 59 (2019) 583-588.

DOI: 10.1007/s11148-019-00277-2

Google Scholar

[15] V.V. Primachenko, V.P. Bunina, R.S. Shulyak, et al., High-alumina refractories for lining steel ladles (discussion), Refractories 30 (1989) 397-402.

DOI: 10.1007/bf01280664

Google Scholar

[16] I.D. Kashcheev, E.V. Rozhkov, and Yu.E. Pivinskii, Structurization of unshaped Refractories, refractories and Industrial Ceramics 44 (2003) 37-41.

DOI: 10.1023/a:1023967712104

Google Scholar

[17] Yu.E. Pivinskii and P.V. Dyakin, Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 7. Sintering and secondary mullite formation of materials based on composite composition HCBS during nonisothermal heating and isothermal firing, Refractories and Industrial Ceramics 57 (2017) 536-544.

DOI: 10.1007/s11148-017-0019-x

Google Scholar

[18] S.A. Zhikharevich, A.T. Zelenskaya, and A.P. Kochetova, High-alumina products based on kyanite-sillimanite concentrate, Refractories 10 (1969) 369-374.

DOI: 10.1007/bf01291476

Google Scholar

[19] . K. Singh, A.V. Subramanyam & M.R.K. Rao, Development of high alumina refractories from technical alumina and kyanite, Transactions of the Indian Ceramic Society 43 (1984) 25-27.

DOI: 10.1080/0371750x.1984.10822670

Google Scholar

[20] S.P. Shmitt-Fogelevich, Change in phase composition of high-alumina refractories, Refractories 9 (1968) 789-796.

DOI: 10.1007/bf01283441

Google Scholar

[21] I.D. Kashcheev, A.É. Glyzina, A.B. Finkel'shtein, et al., Unmolded diatomite based heat insulating material for aluminum alloys, Refractories and Industrial Ceramics 60 (2019) 362-364.

DOI: 10.1007/s11148-019-00367-1

Google Scholar

[22] I.D. Kashcheev, & I.A. Pavlova, Dependence of properties of acid-resistant products on the molding method, Glass Ceram 63 (2006) 86-88.

DOI: 10.1007/s10717-006-0044-6

Google Scholar