Experimental and Numerical Study of the Hybridisation Effect on the High-Velocity Impact Resistance of Thermoplastic Composites Based on Aramid Fabrics

Article Preview

Abstract:

One of the urgent tasks of the development of new protective structures is to improve the ballistic performance of thermoplastic composites reinforced with synthetic high-strength fibres. Hybrid composites based on various types of fibres or fabrics with different weaving could be a possible solution to this problem. This paper presents the results of computational and experimental studies of hybrid composites based on aramid fabrics with satin and plain weave structures. Numerical modelling based on the reduced ply-level approach was used for the design of hybrid composites. The results obtained during calculations were in good agreement with validation experiments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

81-86

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bhatnagar, Ed., Lightweight Ballistic Composites: Military and Low-Enforcement Applications. London: Woodhead Publishers, (2006).

Google Scholar

[2] B.A. Cheeseman, T.A. Bogetti, Ballistic impact into fabric and compliant composite laminates, Compos. Struct. 61 (2003) 161-173.

DOI: 10.1016/s0263-8223(03)00029-1

Google Scholar

[3] Y. Swolfs, L. Gorbatikh, I. Verpoest, Fibre hybridisation in polymer composites: A review, Composites Part A 67 (2014) 181-200.

DOI: 10.1016/j.compositesa.2014.08.027

Google Scholar

[4] F. Larsson, L. Svensson, Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour, Composites Part A 33 (2002) 221-231.

DOI: 10.1016/s1359-835x(01)00095-1

Google Scholar

[5] R. Park, J. Jang, Impact behavior of aramid fiber/glass fiber hybrid composites: the effect of stacking sequence, Polym. Compos. 1 (2001) 80-89.

DOI: 10.1002/pc.10519

Google Scholar

[6] K.S. Pandya, J.R. Pothnis, G. Ravikumar, N.K. Naik, Ballistic impact behavior of hybrid composites, Mater. and Des. 44 (2013) 128-135.

DOI: 10.1016/j.matdes.2012.07.044

Google Scholar

[7] A. Aktas, M. Aktas, F. Turan, The effect of stacking sequence on the impact and post-impact behavior of woven/knit fabric glass/epoxy hybrid composites, Compos. Struct. 103 (2013) 119-135.

DOI: 10.1016/j.compstruct.2013.02.004

Google Scholar

[8] X. Chen, Y. Zhou, G. Wells, Numerical and experimental investigations into ballistic performance of hybrid fabric panels, Composites Part B 58 (2014) 35-42.

DOI: 10.1016/j.compositesb.2013.10.019

Google Scholar

[9] T.K. Ćwik, L. Iannucci, P. Curtis, D. Pope, Design and ballistic performance of hybrid composite laminates, Appl. Compos. Mater. (2016) 1-17.

DOI: 10.1007/s10443-016-9536-x

Google Scholar

[10] A.K. Bandaru, S. Ahmad, N. Bhatnagar, Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics, Composites Part A 97 (2017) 151-165.

DOI: 10.1016/j.compositesa.2016.12.007

Google Scholar

[11] M. Karahan, N. Karahan, M.A. Nasir, Y. Nawab, Effect of structural hybridization on ballistic performance of aramid fabrics, J. Thermoplast. Compos. Mater. 32(6) (2019) 795-814.

DOI: 10.1177/0892705718780197

Google Scholar

[12] S.B. Sapozhnikov, O.A. Kudryavtsev, M.V. Zhikharev, Fragment ballistic performance of homogenous and hybrid thermoplastic composites, Int. J. Impact. Eng. 81 (2015) 8-16.

DOI: 10.1016/j.ijimpeng.2015.03.004

Google Scholar

[13] F. Zulkifli, J. Stolk, U. Heisserer, Y.A. Tuck-Mun, L. Zhiyi, H.X. Matthew, Strategic positioning of carbon fiber layers in an UHMwPE ballistic hybrid composite panel, Int. J. Impact. Eng. 129 (2019) 119-127.

DOI: 10.1016/j.ijimpeng.2019.02.005

Google Scholar

[14] A.K. Bandaru, L. Vetiyatil, S. Ahmad, The effect of hybridization on the ballistic impact behavior of hybrid composite armors, Composites Part B 76 (2015) 300-319.

DOI: 10.1016/j.compositesb.2015.03.012

Google Scholar

[15] Armor Clothes, Classification and General Technical Requirements, GOST R 50744-95, September (2013).

Google Scholar

[16] S.B. Sapozhnikov, O.A. Kudryavtsev, Compact accelerator for ballistic testing, Bull. SUSU Mech. Eng. Ind., 20 (33) (2012) 139-143.

Google Scholar

[17] J.P. Lambert, G.H. Jonas, Towards standardization in terminal ballistics testing: velocity representation, BRL Report No. 1852, Aberdeen Proving Ground, MD: U.S. Army Ballistic Research Laboratories 1976 p.51.

DOI: 10.21236/ada021389

Google Scholar

[18] S. Sapozhnikov, O. Kudryavtsev, Modeling of Thermoplastic Composites Used in Protective Structures, Mech. Compos. Mater. 51 (4) (2015) 419-426.

DOI: 10.1007/s11029-015-9513-8

Google Scholar

[19] O.A. Kudryavtsev, S.B. Sapozhnikov, Yarn-Level modelling of woven and unidirectional thermoplastic composite materials under ballistic impact, PNRPU Mech. Bull. 3 (2016) 108-119.

DOI: 10.15593/perm.mech/2016.3.07

Google Scholar

[20] M.V. Zhikharev, S.B. Sapozhnikov, Two-scale modeling of high-velocity fragment GFRP penetration for assessment of ballistic limit, Int. J. Impact. Eng. 101 (2017) 42-48.

DOI: 10.1016/j.ijimpeng.2016.08.005

Google Scholar

[21] О.A. Kudryavtsev, S.B. Sapozhnikov, M.V. Zhikharev, Numerical study of the influence of gaps between tiles and backing type on overall high-velocity impact performance of a ceramic-faced protective structure, PNRPU Mech. Bull. 4 (2019) 80-90.

DOI: 10.15593/perm.mech/2019.4.08

Google Scholar