[1]
P. Volino, F. Cordier, Magnenat-Thalmann N. From early virtual garment simulation to interactive fashion design. Computer-Aided Design. 37 (2005) 593-608.
DOI: 10.1016/j.cad.2004.09.003
Google Scholar
[2]
Y.-J. Liu, D.-L. Zhang, M. M.-F. Yuen A survey on CAD methods in 3D garment design. Computers in Industry. 61 (2010) 576-593.
DOI: 10.1016/j.compind.2010.03.007
Google Scholar
[3]
N.L. Kornilova, S.V. Salkutsan, M.V. Bolsunovskaya etc. Some aspects of PLM-systems for creating digital factjries in the garment industry. Izvestiya vysshikh uchebnykh zavedenii, seriya Teknologiya tekstil'noi promyshlennosti. 4 (2018) 103-106.
Google Scholar
[4]
N. Hadjichristidis, S. Pispas, G. Floudas Block Copolymers: Synthesis Strategies, Physical Properties and Applications., Hoboken, 2003-422.
Google Scholar
[5]
N. Hadjichristidis, M. Pitsikalis, S. Pispas et al. Block copolymers: synthetic strategies, physical properties, and applications. Chem. Rev. 101(12) (2001) 3747- 3792.
Google Scholar
[6]
N. Kornilova, S. Koksharov, A. Arbuzova et al. Development of reinforced interlining materials which regulate elastic properties. Ind. J. Fibre & Text. Res. 42 (2017) 150-159.
Google Scholar
[7]
S.A. Koksharov, N.L. Kornilova, S.V. Fedosov, Modification of polyester fibers to create materials with adjustable rigidity. Isvestiya vysshikh uchebnykh zavedenii, seriya Khimiya i khimicheskaya tekhnolodiya. 59(6) (2016) 105-111.
DOI: 10.6060/tcct.20165906.5364k
Google Scholar
[8]
S.A. Koksharov, N.L. Kornilova, S.V. Fedosov Development of reinforced composite materials with a nanoporous textile substrate and a brush-structured polymer interfacial layer. Russ. J. Gen. Chem. 87(6) (2017) 1428-1438.
DOI: 10.1134/s1070363217060469
Google Scholar
[9]
S.D. Prokoshkin, V. Brailovskii, I.Yu. Khmelevskaya, et al. Nanostructural State of Allows. MiTOM. 5 (2005) 24.
Google Scholar
[10]
V. Brailovski, S.D. Prokoshkin, K.E. Inaekyan Structure and Properties of the Ti–50.0 at % Ni Alloy after Strain Hardening and Nanocrystallizing Thermomechanical Processing. Mater. Trans. JIM. 47 (2006) N3 795.
DOI: 10.2320/matertrans.47.795
Google Scholar
[11]
S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan et al. Structure and properties of severely cold-rolled and annealed Ti–Ni shape memory alloys. Mater. Sci. Eng.: A. 481 (2008) 114.
DOI: 10.1016/j.msea.2007.02.150
Google Scholar
[12]
Functional Fillers for Plastics/ Edited by M. Xanthos. Weinheim: Wiley-VCH, (2010).
Google Scholar
[13]
Ch.K. Jayasuriya, J.K. Premashandra Properties of Polymers Reinforced with Silica, Physical Properties of Polymers Handbook, Edited by J. E. Mark. N-Y.: Springer, 32 (2007) 551-560.
DOI: 10.1007/978-0-387-69002-5_32
Google Scholar
[14]
H.Vaziri, I. Omaraei, M. Abadyan et al. Thermophysical and rheological behavior of polystyrene/silica nanocomposites: Investigation of nanoparticle content. Mater. Design. 32 (2011) 4537-4542.
DOI: 10.1016/j.matdes.2011.01.022
Google Scholar
[15]
E. Kontou, G. Anthoulis, The effect of silica nanoparticles on the thermomechanical properties of polystyrene. J. Appl. Polym. Sci. 105 (2007) 1723-1731.
DOI: 10.1002/app.26409
Google Scholar
[16]
М. Conradi Nanosilica-reinforced polymer composites. Materials and technology. 47(3) (2013) 285-293.
Google Scholar
[17]
S.A. Koksharov, N.L. Kornilova, J.A. Shammut et al. Synthesis of a highly chained polymeric connecting in the structure of a multilayered package for garments. Key Engineering Materials. 816 (2019) 219-227.
DOI: 10.4028/www.scientific.net/kem.816.219
Google Scholar
[18]
Information on http://2s2b.ru/c667-2580173.html.
Google Scholar
[19]
N.V. Losev, I.M. Lipatova Application of hydroacoustic treatment for intensification of alkaline deacetylation of chitin. Russ. J. Gen. Chem. 88(2) (2018) 356-361.
DOI: 10.1134/s1070363218020287
Google Scholar
[20]
N.E. Kochkina, V.A. Padokhin Mechanical Activation of a Gelatinized Dispersion of Carboxymethylated Starch in a Conical Rotor Apparatus. Russ. J. Appl. Chem. 84(1) (2011) 84-87.
DOI: 10.1134/s1070427211010149
Google Scholar
[21]
S.A. Koksharov On application of dynamic light scattering method for estimation nanoparticle sizes in two-component hydrosol. Isvestiya vysshikh uchebnykh zavedenii, seriya Khimiya i khimicheskaya tekhnologiya. 58(1) (2015) 33-36.
Google Scholar