[1]
R.R. Safin, F.V. Nazipova, A.E. Voronin, Pre-treatment of vegetable waste in the production of composite materials, Key Engineering Materials. 743 (2017) 53-57.
DOI: 10.4028/www.scientific.net/kem.743.53
Google Scholar
[2]
R.R. Khasanshin, N.R. Galyavetdinov, Use of low-grade vegetable raw materials in production of composites by preliminary processing, Solid State Phenomena. 265 (2017) 296-302.
DOI: 10.4028/www.scientific.net/ssp.265.296
Google Scholar
[3]
X. Zhou, C. Segovia, U.H. Abdullah, A. Pizzi, G. Du, A novel fider-veneer-laminated composite based on tannin resin, Journal of Adhesion. 17 (2015) 1-7.
DOI: 10.1080/00218464.2015.1084233
Google Scholar
[4]
R.R. Safin, A.R. Shaichutdinova, The study of wood-based composites based on biodegradable polymer, Key Engineering Materials. 706. (2016) 201-206.
Google Scholar
[5]
P. Perre, G. Almeida, J. Colin, Energy issues of drying and heat treatment for solid wood and other biomass sources, Modern Drying Technology. 4 (2011) 245-293.
DOI: 10.1002/9783527631681.ch7
Google Scholar
[6]
O. Hosseinaei, S. Wang, A.M. Taylor, Effect of hemicellulose extraction on water absorption and mold susceptibility of wood-plastic composites, Int Biodeter Biodegr. 71 (2012) 29-35.
DOI: 10.1016/j.ibiod.2011.12.015
Google Scholar
[7]
B. Arias, C. Pevida, J. Fermoso, M.G. Plaza, F. Rubiera, J.J. Pisan, Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Processing Technology. 89(2) (2008) 169-175.
DOI: 10.1016/j.fuproc.2007.09.002
Google Scholar
[8]
A. Kharazipour, A. Huettermann, H.D. Luedemannn, Enzymatic activation of wood fidres as a means for the production of wood composites, Journal of Adhesion Science and Technology. 11(3) (2012) 419-427.
DOI: 10.1163/156856197x00796
Google Scholar
[9]
B. Dawson-Andoh, L.M. Matuana, J. Harrison, Susceptibility of high-density polyethylene/wood-flour composite to mold discoloration, Journal of the Institute of Wood Science. 17(2) (2005) 114-119.
DOI: 10.1179/wsc.2005.17.2.114
Google Scholar
[10]
M. Hietala, J. Niinimaki, K. Oksman, Processing of wood chip-plastic composites: effect on wood particle size, microstructure and mechanical properties, Journal Plastics, Rubber and Composites. 40(2) (2011) 46-56.
DOI: 10.1179/174328911x12988622800855
Google Scholar
[11]
M. Totolin, S. Manolache, R.M. Rowell, F.S. Deenes, Application of cold plasma to improve properties of phenolic-bonded aspen fiderboard, Journal on Natural Fibers. 5(2) (2008) 170-192.
DOI: 10.1080/15440470801929671
Google Scholar
[12]
R.R. Safin, R.R. Khasanshin, A.R. Shaikhutdinova, I.E. Khakimzyanov, Calculation methodology of the process of oscillating vacuum-conductive drying of lumber, IOP Conference Series: Materials Science and Engineering. (2016) 012093.
DOI: 10.1088/1757-899x/124/1/012093
Google Scholar
[13]
V.V. Kosov, V.A. Sinelshchikov, G.A. Sytchev, Effect of torrefaction on properties of solid granulated fuel of different biomass types, Journal of High Temperature. 52 (2014) 907-912.
DOI: 10.1134/s0018151x14060170
Google Scholar
[14]
O. Hosseinaei, S. Wang, T.G. Rials, C. Xing, A.M. Taylor, S.S. Kelley, Effect of hemicellulose extraction on physical and mechanical properties and mold susceptibility of flakeboard, J. Forest Prod. 61 (2011) 31-37.
DOI: 10.13073/0015-7473-61.1.31
Google Scholar
[15]
N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, Effect of thermal-treatment of wood fidres on properties of flat-pressed wood plastic composites. J. Polym. Degrade Stabil 96 (2011) 818-822.
DOI: 10.1016/j.polymdegradstab.2011.02.005
Google Scholar
[16]
A.S. Shaikhutdinova, R.R. Khasanshin, L.V. Akhunova, A.V. Safina, Improving the energy efficiency of solid wood fuel, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2015, pp.315-322.
Google Scholar
[17]
M. Hughes, B. Constant, The water vapour sorption properties of thermally modified and densified wood, Journal of Materials Science. 47 (2012) 3191-3197.
DOI: 10.1007/s10853-011-6154-8
Google Scholar
[18]
R.R. Safin, R.R. Khasanshin, R.V. Salimgaraeva, E.A. Beliakova, Heat treatment of crushed wood in rotary drum dryers, Key Engineering Materials. 743 (2017) 378-382.
DOI: 10.4028/www.scientific.net/kem.743.378
Google Scholar
[19]
H. Militz, S. Lande, Challenges in wood modification technology on the way to practical applications, Wood Material Science and Engineering. 4 (2009) 23-29.
DOI: 10.1080/17480270903275578
Google Scholar
[20]
A.B. Chubov, E.I. Matjushenkova, G.I. Tsarev, Rationale modes of oil heat treatment of plywood, J. News of the St. Petersburg forestry Academy. 194 (2011) 129-137.
Google Scholar
[21]
A. Jukka, The Activities of finnish thermowood association to commercialize thermowood, The Third European Conference on Wood Modification, Cardiff, UK, 2007, pp.3-9.
Google Scholar
[22]
B. Arias, C. Pevida, J. Fermoso, F. Rubiera, Influence of torrefaction on the grindability and reactivity of woody biomass, J. Fuel Processing Technology. 89(2) (2008) 169-175.
DOI: 10.1016/j.fuproc.2007.09.002
Google Scholar
[23]
B. Mohebby, F. Ilbeighi, S. Kazemi-Najafi Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF), J. Holz Roh Werkst 66 (2008) 213-218.
DOI: 10.1007/s00107-008-0231-y
Google Scholar
[24]
O. Hosseinaei, S. Wang, T.G. Rials, C. Xing, A.M. Taylor, S.S. Kelley, Effect of hemicellulose extraction on physical and mechanical properties and mold susceptibility of flakeboard, J. Forest Prod. 61 (2011) 31-37.
DOI: 10.13073/0015-7473-61.1.31
Google Scholar
[25]
M.J. Prins, K.J. Ptasinski, F.J. Janssen, Torrefaction of wood. Part 2. Analysis of products, Journal of Analytical and Applied Pyrolysis, Netherlands. 77 (2006) 35-40.
DOI: 10.1016/j.jaap.2006.01.001
Google Scholar
[26]
J. Cai, Xu Yang, L. Cai, Q. Sheldon, Impact of the combination of densification and thermal modification on dimensional stability and hardness of poplar lumber, Drying Technology. 27 (2013) 1107-1113.
DOI: 10.1080/07373937.2013.775147
Google Scholar
[27]
R.R. Khasanshin, A.L. Timerbaeva, A.V. Safina, Study of the physical and energy properties of fuel granules based on a termomodified wood raw material, Journal of engineering physics and thermophysics. 88(4) (2015) 958-961.
DOI: 10.1007/s10891-015-1270-y
Google Scholar