[1]
V.B. Ginzburg, Steel-rolling technology: theory and practice, Marcel Dekker, New-York, (1989).
Google Scholar
[2]
Z. Wusatowski, Fundamentals of Rolling, Pergamon Press, Katowice, (1969), 619–624.
Google Scholar
[3]
I.I. Onishhenko, P.I. Kucenko, A.I. Kucenko, Theory of continuous rolling, ZSIA, Zaporozh'e, (1998).
Google Scholar
[4]
A.P. Chekmarev, V.P. Grechko, V.V. Getmanec, B.V. Khovrin, Rolling on small-section mill, Metallurgy, Moscow, (1967).
Google Scholar
[5]
V.N. Vydrin, A.S. Fedosenko, V.N. Krainov, Process of continuous rolling, Metallurgy, Moscow, (1970).
Google Scholar
[6]
A.A. Radionov, I.Yu. Andryushin, A.S. Karandaev, V.R. Khramshin, R.R. Khramshin, Study of the effect of the rolling mill inter-stand tension on the strip gauge deviation, Applied mechanics and materials. 756 (2015) 414-419.
DOI: 10.4028/www.scientific.net/amm.756.414
Google Scholar
[7]
V.R. Khramshin, A.A. Radionov, G.P. Kornilov, K.E. Odinsov, Improvement of electric and mechanical system for automated strip tension control at continuous wide-strip hot-rolling mill, Procedia engineering. 150 (2016) 11-17.
DOI: 10.1016/j.proeng.2016.07.208
Google Scholar
[8]
J.Z. Zhang, X.P. Zhang, Formulas of tension of continuous rolling process, Acta metallurgica sinica. 6 (2007) 403-416.
DOI: 10.1016/s1006-7191(08)60003-4
Google Scholar
[9]
V.V. Shokhin, O.V. Permyakova, The study of continuous rolling mill inter-stand tension inferential control systems, Procedia engineering. 129 (2015) 231-238.
DOI: 10.1016/j.proeng.2015.12.038
Google Scholar
[10]
L.S. Bayoumi, Y. Lee, Effect of interstand tension on roll load, torque and workpiece deformation in the rod rolling process, Journal of materials Processing technology. 145 (2004) 7-13.
DOI: 10.1016/s0924-0136(03)00581-8
Google Scholar
[11]
L.S. Bayoumi, Flow and stresses in round–oval–round roll pass sequence, Int. J. Mech. Sci. 40 (1998) 1223–1234.
DOI: 10.1016/s0020-7403(98)00005-8
Google Scholar
[12]
K.F. Kennedy, T. Altan, G.D. Lahoti, Computer-aided analysis of metal flow stresses and roll pass design in rod rolling, Iron Steel Eng. 60 (1983) 50–54.
Google Scholar
[13]
R.R. Arnold, P.W. Whitton, Spread and roll force in rod rolling, Met. Technol. 2 (1975) 43–49.
Google Scholar
[14]
V.M. Salganik, D.N. Tulupov, The study of metal spreading during bar rolling with tension, KGACMIZ, Krasnoyarsk. 5 (1999) 327-329.
Google Scholar
[15]
V.M. Salganik, D.N. Tulupov, Research and improvement of continuous rolling process with tension, Production of bars. 7 (2014) 26-31.
Google Scholar
[16]
A.A. Gorbanev, S.M. Zhuchkov, V.V. Filippov, Theoretical and technological fundamentals of high-speed rolling of wire rod, Graduate school, Minsk, (2003).
Google Scholar
[17]
T. Shinokura, K. Takai, Mathematical models of roll force and torque in steel bar rolling, Iron Steel Inst. Jpn. 72 (1986) 58–64.
DOI: 10.2355/tetsutohagane1955.72.14_1870
Google Scholar
[18]
Y. Lee, H.J. Kim, S.M. Hwang, Analytic model for the prediction of mean effective strain in rod rolling process, J. Mater. Process. Technol. 114 (2001) 129–138.
DOI: 10.1016/s0924-0136(01)00563-5
Google Scholar
[19]
L.S. Kohan, B.F. Belelyubsky, M.I. Lapteva, Effect of tension on the reduce power consumption during hot rolling, Structural mechanics of engineering constructions and buildings. 1 (2012) 70-73.
Google Scholar
[20]
E.O. Kazyrskii, Model of the deformation source taking account of the tension between the cells in continuous rolling, Steel in translation. 10 (2007) 877-878.
DOI: 10.3103/s0967091207100178
Google Scholar