[1]
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[2]
M. Grau, J. Matena, M. Teske, S. Petersen, P. Aliuos, L. Roland, N. Grabow, H.M. Escobar, N.-C. Gellrich, H. Haferkamp, I. Nolte, In vitro evaluation of PCL and P(3HB) as coating materials for selective laser melted porous titanium implants, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10121344
Google Scholar
[3]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).
DOI: 10.1088/1757-899x/248/1/012012
Google Scholar
[4]
N. Contuzzi, S.L. Campanelli, C. Casavola, L. Lamberti, Manufacturing and characterization of 18Ni marage 300 lattice components by selective laser melting, Materials (Basel). 6 (2013) 3451–3468.
DOI: 10.3390/ma6083451
Google Scholar
[5]
M. Yakout, M.A. Elbestawi, S.C. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting, Int. J. Adv. Manuf. Technol. 95 (2018) 1953–(1974).
DOI: 10.1007/s00170-017-1303-0
Google Scholar
[6]
Y.-L. Kuo, T. Nagahari, K. Kakehi, The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting, Materials (Basel). 11 (2018).
DOI: 10.3390/ma11060996
Google Scholar
[7]
P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.
DOI: 10.4028/www.scientific.net/msf.843.253
Google Scholar
[8]
X. Han, T. Sawada, C. Schille, E. Schweizer, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, S. Spintzyk, Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes, Materials (Basel). 11 (2018).
DOI: 10.3390/ma11101801
Google Scholar
[9]
P.A. Lykov, A.O. Shults, K.A. Bromer, The Production and Subsequent Selective Laser Melting of AlSi12 Powder, Solid State Phenom. 265 (2017) 434–438.
DOI: 10.4028/www.scientific.net/ssp.265.434
Google Scholar
[10]
N.T. Aboulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, C. Tuck, Selective laser melting of aluminum alloys, MRS Bull. 42 (2017) 311–319.
DOI: 10.1557/mrs.2017.63
Google Scholar
[11]
Z. Mao, D.Z. Zhang, P. Wei, K. Zhang, Manufacturing feasibility and forming properties of Cu-4Sn in selective laser melting, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10040333
Google Scholar
[12]
P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016-April (2016).
DOI: 10.4271/2016-01-0333
Google Scholar
[13]
W. Xiong, L. Hao, Y. Li, D. Tang, Q. Cui, Z. Feng, C. Yan, Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy, Mater. Des. 170 (2019).
DOI: 10.1016/j.matdes.2019.107697
Google Scholar
[14]
K.-H. Leitz, C. Grohs, P. Singer, B. Tabernig, A. Plankensteiner, H. Kestler, L.S. Sigl, Fundamental analysis of the influence of powder characteristics in Selective Laser Melting of molybdenum based on a multi-physical simulation model, Int. J. Refract. Met. Hard Mater. 72 (2018) 1–8.
DOI: 10.1016/j.ijrmhm.2017.11.034
Google Scholar
[15]
M. Wang, R. Li, T. Yuan, C. Chen, M. Zhang, Q. Weng, J. Yuan, Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation, Int. J. Refract. Met. Hard Mater. 70 (2018) 9–18.
DOI: 10.1016/j.ijrmhm.2017.09.004
Google Scholar
[16]
P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.
DOI: 10.4028/www.scientific.net/msf.870.314
Google Scholar
[17]
T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd. 680 (2016) 333–342.
DOI: 10.1016/j.jallcom.2016.04.107
Google Scholar
[18]
B. AlMangour, D. Grzesiak, J.-M. Yang, Selective laser melting of TiB2/H13 steel nanocomposites: Influence of hot isostatic pressing post-treatment, J. Mater. Process. Technol. 244 (2017) 344–353.
DOI: 10.1016/j.jmatprotec.2017.01.019
Google Scholar
[19]
W.W. Zhang, Y. Hu, Z. Wang, C. Yang, G.Q. Zhang, K.G. Prashanth, C. Suryanarayana, A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy, Mater. Sci. Eng. A. 734 (2018) 34–41.
DOI: 10.1016/j.msea.2018.07.082
Google Scholar
[20]
R.M. Baytimerov, P.A. Lykov, S.B. Sapozhnikov, D.A. Zherebtsov, K.A. Bromer, Method of Producing Composite Powder EP648-Al2O3 for Selective Laser Melting Usage, SAE Tech. Pap. (2016).
DOI: 10.4271/2016-01-2117
Google Scholar
[21]
R.M. Baitimerov, P.A. Lykov, L. V Radionova, Influence of heat treatment on microstructure and mechanical properties of selective laser melted tial6v4 alloy, Solid State Phenom. 284 SSP (2018) 615–620.
DOI: 10.4028/www.scientific.net/ssp.284.615
Google Scholar
[22]
D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, X. Cheng, X. Li, Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting, Mater. Lett. 235 (2019) 1–5.
DOI: 10.1016/j.matlet.2018.09.152
Google Scholar
[23]
Z.A. Mierzejewska, R. Hudák, J. Sidun, Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications, Materials (Basel). 12 (2019).
DOI: 10.3390/ma12010176
Google Scholar
[24]
R.M. Baitimerov, A.B. Liberzon, V.I. Mitin, Selective Laser Melting of Mixed EP648-Alumina Powder, Mater. Sci. Forum. 946 (2019) 966–971.
DOI: 10.4028/www.scientific.net/msf.946.966
Google Scholar