Processing of Alumina Reinforced Copper Metal Matrix Composite by Selective Laser Melting Technology

Article Preview

Abstract:

For the development of the additive technologies it is necessary to expand the range of the used materials. One of the most promising directions is the creation of products from composite materials. In this work copper-alumina composite powder was prepared by ball milling, and used in selective laser melting, to produce a composite material. The raw powder materials consisted of the gas atomized Cu powder (with the regular spherical shape and mean particle diameter of 32 μm) and alumina powder, produced by condensation of vapor on electrostatic filter (average particle size is about 220 nm). The alumina weight ratio was 5%. Four 30x10x6 mm copper-alumina specimens were manufactured. The scanning electron microscopy was used for the analysis of composite microstructure. Obtained copper-alumina composite material has higher hardness, in comparison with cast copper (HRB is 60 and 45, respectively).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

175-180

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.D. Gu, Laser additive manufacturing of high-performance materials, Springer, Berlin, Heidelberg, (2015).

Google Scholar

[2] K. Yihong, S.B. Tor, N.H. Loh, Comparison of two metallic additive manufacturing technologies: Selective laser melting and electron beam melting, in: Proc. Int. Conf. Prog. Addit. Manuf., 2014: p.231–239.

DOI: 10.3850/978-981-09-0446-3_033

Google Scholar

[3] P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[4] X. Shi, S. Ma, C. Liu, C. Chen, Q. Wu, X. Chen, J. Lu, Performance of high layer thickness in selective laser melting of Ti6Al4V, Materials (Basel). 9 (2016).

DOI: 10.3390/ma9120975

Google Scholar

[5] A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, S.C. Veldhuis, Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11122343

Google Scholar

[6] P. Szymczyk, G. Ziółkowski, A. Junka, E. Chlebus, Application of Ti6Al7Nb alloy for the manufacture of biomechanical functional structures (BFS) for custom-made bone implants, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11060971

Google Scholar

[7] X. Han, T. Sawada, C. Schille, E. Schweizer, L. Scheideler, J. Geis-Gerstorfer, F. Rupp, S. Spintzyk, Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11101801

Google Scholar

[8] B. Ealy, L. Calderon, W. Wang, J. Kapat, I. Mingareev, M. Richardson, R. Valentin, Characterization of lam-fabricated porous superalloys for turbine components, in: Proc. ASME Turbo Expo, (2016).

DOI: 10.1115/gt2016-58080

Google Scholar

[9] L. Denti, Additive manufactured A357.0 samples using the laser powder bed fusion technique: Shear and tensile performance, Metals (Basel). 8 (2018).

DOI: 10.3390/met8090670

Google Scholar

[10] D. Gu, Y. Shen, L. Zhao, J. Xiao, P. Wu, Y. Zhu, Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering, Mater. Sci. Eng. A. 445–446 (2007) 316–322.

DOI: 10.1016/j.msea.2006.09.057

Google Scholar

[11] P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.

DOI: 10.4028/www.scientific.net/msf.870.314

Google Scholar

[12] J. Li, Z. Zhao, P. Bai, H. Qu, M. Liang, H. Liao, L. Wu, P. Huo, Tribological behavior of TiC particles reinforced 316Lss composite fabricated using selective laser melting, Materials (Basel). 16 (2019).

DOI: 10.3390/ma12060950

Google Scholar

[13] P.A. Lykov, S.B. Sapozhnikov, I.S. Shulev, D.A. Zherebtsov, R.R. Abdrakhimov, Composite Micropowders for Selective Laser Sintering, Metallurgist. 59 (2016) 851–855.

DOI: 10.1007/s11015-016-0183-0

Google Scholar

[14] R. Thiraviam, T. Sornakumar, A.S. Kumar, Development of copper: Alumina Metal Matrix Composite by Powder Metallurgy method, Int. J. Mater. Prod. Technol. 31 (2008) 305–313.

DOI: 10.1504/ijmpt.2008.018029

Google Scholar

[15] ASTM B212-13, (2013).

Google Scholar

[16] ASTM B417-13, (2013).

Google Scholar

[17] A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J. 17 (2011) 380–386.

DOI: 10.1108/13552541111156504

Google Scholar

[18] P.A. Lykov, E. V Safonov, A.O. Shul'ts, Powder particle formation mechanism with dispersion of different molten metals, Metallurgist. 57 (2013) 232–236.

DOI: 10.1007/s11015-013-9717-x

Google Scholar

[19] J.B. Jones, D.I. Wimpenny, R. Chudasama, G.J. Gibbons, Printed circuit boards by selective deposition and processing, in: 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011, 2011: p.639–656. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875456265&partnerID=40&md5=50e904a2708c7b3a1f46dc36859a2b4a.

Google Scholar

[20] M.A. Lodes, R. Guschlbauer, C. Körner, Process development for the manufacturing of 99.94% pure copper via selective electron beam melting, Mater. Lett. 143 (2015) 298–301.

DOI: 10.1016/j.matlet.2014.12.105

Google Scholar

[21] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.

DOI: 10.1016/j.matlet.2016.05.064

Google Scholar

[22] D.Q. Zhang, Z.H. Liu, C.K. Chua, Investigation on forming process of copper alloys via Selective Laser Melting, in: High Value Manuf. Adv. Res. Virtual Rapid Prototyp. - Proc. 6th Int. Conf. Adv. Res. Rapid Prototyping, VR@P 2013, 2014: p.285–289. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84892183336&partnerID=40&md5=e5cd0cc7866eae0729a69c43755731ce.

DOI: 10.1201/b15961-53

Google Scholar

[23] P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016-April (2016).

DOI: 10.4271/2016-01-0333

Google Scholar

[24] S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.-P. Kruth, J. Van Humbeeck, K. Vanmeensel, Influence of selective laser melting process parameters on texture evolution in pure copper, J. Mater. Process. Technol. 270 (2019) 47–58.

DOI: 10.1016/j.jmatprotec.2019.02.022

Google Scholar

[25] N.K. Tolochko, T. Laoui, Y. V Khlopkov, S.E. Mozzharov, V.I. Titov, M.B. Ignatiev, Absorptance of powder materials suitable for laser sintering, Rapid Prototyp. J. 6 (2000) 155–160.

DOI: 10.1108/13552540010337029

Google Scholar