[1]
D. A. Kochuev, R. V. Chkalov, V. G. Prokoshev, and K. S. Khorkov, Laser radiation impact on a solid surface and formation of micro-and nanostructures, EPJ Web of Conferences. 220 (2019) 01010.
DOI: 10.1051/epjconf/201922001010
Google Scholar
[2]
K. S. Khorkov, D. A. Kochuev, A. A. Antipov, M. N. Gerke, R. V. Chkalov, and V. Ilin, Femtosecond laser-induced periodic surface structures formation on molybdenum in air and liquid nitrogen, Proc. of intern. conf. on new trends in quantum and mesoscopic physics. (2018) 54-56.
Google Scholar
[3]
G. W. Yang, Laser ablation in liquids: Applications in the synthesis of nanocrystals, Progress in Materials Science. 52 (2007).
Google Scholar
[4]
M. Ivanov, Y. Kopylov, V. Kravchenko, and S. Zayats, Sintering and Optical Quality of Highly Transparent Yb Doped Yttrium Lanthanum Oxide Ceramics, Phys. Status Solidi. 10 (2013) 940-944.
DOI: 10.1002/pssc.201300012
Google Scholar
[5]
S. Eliezer, N. Eliaz, et. al., Synthesis of nanoparticles with femtosecond laser pulses, Phys. Rev. B. 69 (2004), 144119.
Google Scholar
[6]
X. Du, and J. He, Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications, Nanoscale. 3 (2011) 3984-4002.
DOI: 10.1039/c1nr10660k
Google Scholar
[7]
V. V. Gafiychuk, et al., ZnO nanoparticles produced by reactive laser ablation, Applied Surface Science, 257 (2011) 8396-8401.
DOI: 10.1016/j.apsusc.2011.04.084
Google Scholar
[8]
U. Popp, et al., Properties of nanocrystalline ceramic powders prepared by laser evaporation and recondensation, Journal of the European Ceramic Society. 18 (1998) 1153-1160.
DOI: 10.1016/s0955-2219(98)00037-5
Google Scholar
[9]
R. Bachor, et al., Photosensitized destruction of human bladder carcinoma cells treated with chlorin e6-conjugated microspheres, Proceedings of the National Academy of Sciences. 88 (1991) 1580-1584.
DOI: 10.1073/pnas.88.4.1580
Google Scholar
[10]
H. Kurita, A. Takami, and S. Koda, Size reduction of gold particles in aqueous solution by pulsed laser irradiation, Applied Physics Letters. 72 (1998) 789-791.
DOI: 10.1063/1.120894
Google Scholar
[11]
W. Zapka, W. Ziemlich, and A. C. Tam, Efficient pulsed laser removal of 0.2 μm sized particles from a solid surface, Applied physics letters. 58 (1991) 2217-2219.
DOI: 10.1063/1.104931
Google Scholar
[12]
H. Exner, et al., Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder, Virtual and physical prototyping. 3 (2008) 3-11.
DOI: 10.1080/17452750801907970
Google Scholar
[13]
V. V. Osipov, Y. A. Kotov, and M. G. Ivanov, et al., Laser synthesis of nanopowders, Laser physics. 16 (2006) 116-125.
Google Scholar
[14]
J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution, Appl. Phys. A. 80 (2005) 753-758.
DOI: 10.1007/s00339-004-3081-4
Google Scholar
[15]
A. De Giacomo, et al., Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production, Physical Chemistry Chemical Physics. 15 (2013) 3083-3092.
DOI: 10.1039/c2cp42649h
Google Scholar
[16]
J. König, S. Nolte, and A. Tünnermann, Plasma evolution during metal ablation with ultrashort laser pulses, Optics Express. 13 (2005) 10597-10607.
DOI: 10.1364/opex.13.010597
Google Scholar
[17]
J. G. Fujimoto, et al., Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures, Physical Review Letters. 53 (1984) 1837.
DOI: 10.1103/physrevlett.53.1837
Google Scholar
[18]
L. K. Ang, and M. Pant, Generalized model for ultrafast laser induced electron emission from a metal tip, Physics of Plasmas. 20 (2013) 056705.
DOI: 10.1063/1.4803086
Google Scholar
[19]
N. M. Bulgakova, et al., Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials, Physical Review B. 69 (2004) 054102.
DOI: 10.1103/physrevb.69.054102
Google Scholar
[20]
A. A. Ionin, et al., Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse, Applied Physics A. 117 (2014) 1757-1763.
DOI: 10.1007/s00339-014-8826-0
Google Scholar
[21]
A. A. Ionin, et al., Ultrafast electron dynamics of material surfaces under the action of femtosecond laser pulses, Bulletin of the Russian Academy of Sciences: Physics. 80 (2016) 450-454.
DOI: 10.3103/s1062873816040158
Google Scholar
[22]
D. A. Kochuev, et al., Laser ablation of materials by femtosecond laser pulses in liquid media, 2018 International Conference Laser Optics (ICLO). (2018) 335.
DOI: 10.1109/lo.2018.8435807
Google Scholar
[23]
K. S. Khorkov, et al., Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen, Journal of Physics: Conference Series. 951 (2018) 012014.
DOI: 10.1088/1742-6596/951/1/012014
Google Scholar
[24]
E. B. Gordon, et al., Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water, High Energy Chemistry. 48 (2014) 206-212.
DOI: 10.1134/s0018143914030060
Google Scholar
[25]
A. Ancona, et al., High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system, Optics express. 16 (2008) 8958-8968.
DOI: 10.1364/oe.16.008958
Google Scholar
[26]
T. V. Kononenko, et al., Influence of pulse repetition rate on percussion drilling of Ti-based alloy by picosecond laser pulses Optics and Lasers in Engineering. 103 (2018) 65-70.
DOI: 10.1016/j.optlaseng.2017.12.003
Google Scholar