Mechanical Properties of Bio-Composites Based on Polymer Blends of Ethylene-Vinyl Acetate Copolymer and Polyethylene with Natural Fillers

Article Preview

Abstract:

Highly filled bio-composites based on ethylene-vinyl acetate copolymer (EVA) with cellulose and wood flour were prepared in the previous parts of the study. The aim of this work was to dilute them with a polyethylene (PE), to prepare new bio-composites with lower EVA content and to investigate the effect of EVA/PE ratio on the mechanical properties. It was shown that melt flow index (MFI) and elongation at break increased additively with an increase of EVA content in the composition, but yield strength had an inverse tendency. The obtained results are extremely useful for choosing the right composition for the industrial implementation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

159-163

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J.L. Griffin Biodegradable Fillers in Thermoplastics, Fillers and Reinforcements for Plastics. Advances in Chemistry 134(16) (1974) 159-170.

DOI: 10.1021/ba-1974-0134.ch016

Google Scholar

[2] A.I. Suvorova, I.S. Tyukova and E.I. Trufanova, Rus Chem Reviews 69 (5) (2000) 451-459.

Google Scholar

[3] V.T. Breslin, J Environ Polym Degrad, 1(2) (1993) 127-141.

Google Scholar

[4] K.G. Satyanarayana, G.G.C. Arizaga and F. Wypych, Prog. Polym. Sci., 34 (2009) 982–1021.

Google Scholar

[5] K.G. Satyanarayana, Revista Matéria, 15(2) (2010) 88–95.

Google Scholar

[6] E.E. Mastalygina, P.V. Pantyukhov and A.A. Popov, IOP Conf. Ser.: Mater. Sci. Eng., 369(1) (2018) 012044.

DOI: 10.1088/1757-899x/369/1/012044

Google Scholar

[7] E.E. Mastalygina, A.A. Popov and P.V. Pantyukhov, IOP Conf. Ser.: Mater. Sci. Eng., 213(1) (2017) 012011.

DOI: 10.1088/1757-899x/213/1/012011

Google Scholar

[8] P.V. Pantyukhov, T.V. Monakhova, N.N. Kolesnikova, A.A. Popov and S.G. Nikolaeva, J. Balk. Tribol. Assoc., 19(3) (2013) 467-475.

Google Scholar

[9] E.M. Khar'kova, D.I. Mendeleev, M.A. Guseva and V.A. Gerasin, J. Polym. Environ., 27(1) (2019) 165-175.

Google Scholar

[10] E.M. Khar'kova, D.I. Mendeleev, M.A. Guseva, B.F. Shklyaruk, V.A. Gerasin and E.M. Antipov, Polym. Sci. Ser. B, 59(5) (2017) 601-609.

DOI: 10.1134/s1560090417050050

Google Scholar

[11] S.Z. Rogovina, E.V. Prut and A.A. Berlin, Polym. Sci. Ser. A, 61(4) (2019) 417-438.

Google Scholar

[12] A.Yu. Anpilova, E.E. Mastalygina, N.P. Khrameeva and A.A. Popov, AIP Conf. Proc., 2051 (2018) 020018.

Google Scholar

[13] A.Yu. Anpilova, E.E. Mastalyginaa, N.P. Khrameeva and A.A. Popov, Rus. J. Phys. Chem. B, 14(1) (2020) 176–182.

Google Scholar

[14] A. Zykova, P. Pantyukhov and A. Popov, AIP Conf. Proc., 1736 (2016) 4949698.

Google Scholar

[15] A.K. Zykova, P.V. Pantyukhov, T.V. Monakhova and A.A. Popov, IOP Conf. Ser.: Mater. Sci. Eng., 213(1) (2017) 012012.

DOI: 10.1088/1757-899x/213/1/012012

Google Scholar

[16] A. Ajji and L.A. Utracki, Polym. Eng. Sci., 36(12) (1996) 1574-1585.

Google Scholar

[17] I.W. Hamley, The Physics of Block Copolymers; Oxford University Press: New York, NY, USA, 19 (1998).

Google Scholar

[18] P.G. Shelenkov, P.V. Pantyukhov and A.A. Popov IOP Conf. Ser.: Mater. Sci. Eng., 369, (2018) 012043.

DOI: 10.1088/1757-899x/369/1/012043

Google Scholar

[19] ISO 527-2:2012 Plastics - Determination of tensile properties - Part 2: Test conditions for moulding and extrusion plastics.

DOI: 10.3403/00921383

Google Scholar

[20] ISO 1133-1:2011 Plastics - Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics - Part 1: Standard method.

DOI: 10.3403/30183436u

Google Scholar