[1]
Y. Guo, Y. Zhang, H. Huang et al., Novel glass ceramic foams materials based on red mud, Ceram. Int. 40(5) (2014) 6677–6683.
DOI: 10.1016/j.ceramint.2013.11.128
Google Scholar
[2]
L. Lakov, K. Toncheva, A. Staneva et al., Composition, synthesis and properties of color architecture building foam glass obtained from waste packing glass, J. Chem. Technol. Metall. 48(2) (2013) 130–135.
Google Scholar
[3]
V.V. Samoilenko and T.K. Uglova, Kinetics of foam glass formation with different heating rates, Glass Ceram. 73(7-8) (2016) 237–239.
DOI: 10.1007/s10717-016-9864-1
Google Scholar
[4]
H.R. Fernandes, D.D. Ferreira, F. Andreola et al., Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite, Ceram. Int. 40(8) (2014) 13371–13379.
DOI: 10.1016/j.ceramint.2014.05.053
Google Scholar
[5]
H. Wang, K. Feng, Y. Zhou et al., Effects of Na2B4O7·5H2O on the properties of foam glass from waste glass and titania-bearing blast furnace slag, Mater. Lett. 132 (2014) 176–178/.
DOI: 10.1016/j.matlet.2014.06.018
Google Scholar
[6]
A. Ayadi, N. Stiti, K. Boumchedda et al., Elaboration and characterization of porous granules based on waste glass, Powder Technol. 208(2) (2011) 423-426.
DOI: 10.1016/j.powtec.2010.08.038
Google Scholar
[7]
V.A. Arsentiev, L.A. Vaisberg and A.D. Samukov, Nonwaste production of mass use building materials out of volcanic rocks, Gornyi Zhurnal, 12 (2014) 55-63.
Google Scholar
[8]
J. König, R.R. Petersen and Y. Yue, Influence of the glass–calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass, J. Eur. Ceram. Soc. 34(6) (2014) 1591–1598.
DOI: 10.1016/j.jeurceramsoc.2013.12.020
Google Scholar
[9]
A. Mueller, S.N. Sokolova and V.I. Vereshagin, Characteristics of lightweight aggregates from primary and recycled raw materials, Constr. Build. Mater. 22 (2008) 703–712.
DOI: 10.1016/j.conbuildmat.2007.06.009
Google Scholar
[10]
J. König, R.R. Petersen and Y. Yue, Influence of the glass particle size on the foaming process and physical characteristics of foam glasses, J. Non-Cryst. Solids 447 (2016) 190–197.
DOI: 10.1016/j.jnoncrysol.2016.05.021
Google Scholar
[11]
C.-T. Lee, Production of alumino-borosilicate foamed glass body from waste LCD glass, J. Ind. Eng. Chem. 19(6) (2013) 1916–(1925).
DOI: 10.1016/j.jiec.2013.02.038
Google Scholar
[12]
O.V. Kazmina, A.Y. Tokareva and V.I. Vereshchagin, Using quartzofeldspathic waste to obtain foamed glass material, Resource-Efficient Technologies 2(1) (2016) 23–29.
DOI: 10.1016/j.reffit.2016.05.001
Google Scholar
[13]
Y. Tian, P. Lu, S. Zhang, J. Cheng and D. Wu, Mechanism of Surface Depression on Foam Glass, J. Wuhan University of Technol.-Mater. Sci. Ed. 31(3) (2016) 538–542.
DOI: 10.1007/s11595-016-1406-8
Google Scholar
[14]
E. Bernardo, R. Cedro, M. Florean and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int. 33 (2007) 963–968.
DOI: 10.1016/j.ceramint.2006.02.010
Google Scholar
[15]
S. Hashemini, A. Nemati, B. Eftekhari and Y.P. Alizadeh, Preparation and characterisation of diopside-based glass–ceramic foams, Ceram. Int. 38(3) (2012) 2005–(2010).
DOI: 10.1016/j.ceramint.2011.10.035
Google Scholar
[16]
Q. Zhang, F. He, H. Shu et al., Preparation of high strength glass ceramic foams from waste cathode ray tube and germanium tailings, Constr. Build. Mater. 111 (2016) 105–110.
DOI: 10.1016/j.conbuildmat.2016.01.036
Google Scholar
[17]
P.G. Yot and F.O. Méar, Characterization of lead, barium and strontium leachability from foam glasses elaborated using waste cathode ray-tube glasses, J. Hazard. Mater. 185 (2011) 236–241.
DOI: 10.1016/j.jhazmat.2010.09.023
Google Scholar
[18]
L.-J. Hou, T.-Y. Liu and A.-X. Lu, Red mud and fly ash-based ceramic foams using starch and manganese dioxide as foaming agent, Trans. Nonferrous Met. Soc. China 27 (2017) 591−598.
DOI: 10.1016/s1003-6326(17)60066-9
Google Scholar
[19]
Ya.I. Vaisman, A.A. Ketov, Yu.A. Ketov and M.Yu. Slesarev, The Expansion Kinetics of Cellular Glass in the Thermoplastic State under the Hydrated Mechanism of Gas Formation, Glass Phys. Chem. 43(4) (2017) 330–334.
DOI: 10.1134/s1087659617040174
Google Scholar
[20]
R.C. da Silva, E.T. Kubaski, E.T. Tenório-Neto et al., Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix, J. Non-Cryst. Solids 511 (2019) 177–182.
DOI: 10.1016/j.jnoncrysol.2019.02.003
Google Scholar
[21]
P.R. Monich, A.R. Romero, D. Höllen and E. Bernardo, Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste, J. Cleaner Prod. 188 (2018) 871–878.
DOI: 10.1016/j.jclepro.2018.03.167
Google Scholar
[22]
L.K. Kazantseva and S.V. Rashchenko, Optimization of porous heat-insulating ceramics manufacturing from zeolitic rocks, Ceram. Int. 42(16) (2016) 19250–19256.
DOI: 10.1016/j.ceramint.2016.09.091
Google Scholar
[23]
A.C. Bento, E.T. Kubaski, T. Sequinel et al., Glass foam of macroporosity using glass waste and sodium hydroxide as the foaming agent, Ceram. Int. 39(3) (2013) 2423–2430.
DOI: 10.1016/j.ceramint.2012.09.002
Google Scholar
[24]
R.M. Novais, L.H. Buruberri, G. Ascensão et al., Porous biomass fly ash-based geopolymers with tailored thermal conductivity, J. Cleaner Prod. 119 (2016) 99–107.
DOI: 10.1016/j.jclepro.2016.01.083
Google Scholar
[25]
JSC Company "STES-Vladimir,, RU Patent 2,701,951. (2019).
Google Scholar
[26]
ICM Glass Kaluga, RU Patent 2,681,157. (2019).
Google Scholar
[27]
E.A. Yatsenko, B.M. Goltsman, A.S. Kosarev et al., Synthesis of foamed glass based on slag and a glycerol pore-forming mixture // Glass Phys. Chem. 44(2) (2018) 152–155.
DOI: 10.1134/s1087659618020177
Google Scholar
[28]
E.A. Yatsenko, B.M. Gol'tsman, V.A. Smolii et al., Study on the possibility of applying organic compounds as pore-forming agents for the synthesis of foam glass, Glass Phys. Chem. 45(2) (2019) 138–142.
DOI: 10.1134/s1087659619020135
Google Scholar
[29]
E.A. Yatsenko, A.V. Ryabova and B.M. Goltsman, Development of fiber-glass composite coatings for protection of steel oil pipelines from internal and external corrosion, Chernye Metally 12 (2019) 46–51.
Google Scholar
[30]
Information on https://pubchem.ncbi.nlm.nih.gov/compound/Glycerol.
Google Scholar
[31]
J.E. Shelby, Introduction to Glass Science and Technology, second ed., New-York, (2005).
Google Scholar