[1]
N.N. Pavlov, Starenie plastmass v estestvennykh i iskusstvennykh usloviyah, Natural and artificial ageing of plastics, Moscow, Khimiya, (1982).
Google Scholar
[2]
G. Kausch, Razrushenie polimerov, Polymer fracture. Moscow, Mir, (1981).
Google Scholar
[3]
G.M. Bartenev, S.Ya. Frenkel. Fizika polimerov, Physics of polymers. Leningrad, Khimiya, (1990).
Google Scholar
[4]
A.M. Kochnev, R.R. Spiridonova, S.S. Galibeev, Khimiya vysokomolekulyarnykh soedineniy, Chemistry of macromolecular compounds. Kazan, Kazan State Technological University, (2010).
Google Scholar
[5]
Sulejmanov A M 2006 Experimental and theoretical basics of prediction and increase in durability of construction soft shell materials. Abstract doctor of Technical Sciences (Kazan: Kazan State University of Architecture and Civil Engineering) p.32.
Google Scholar
[6]
Information at https://www.binder-world.com.
Google Scholar
[7]
L.N. Shafigullin, N.V. Romanova, I.F. Gumerov, G.R. Shafugullina, A.R. Ibragimov, A.I. Nizamova, Aspects of using accelerated weather testing methods for polymeric materials, IOP Conference Series: Materials Science and Engineering. 412 (2018) 012069.
DOI: 10.1088/1757-899x/412/1/012069
Google Scholar
[8]
V.A. Belinsky, Ultrafioletovaya radiatsiya Solntsa i neba, Ultraviolet radiation of the Sun and sky, Moscow, MGU, (1968).
Google Scholar
[9]
A.A. Dmitrieva Klimat Moskvy, Climate of Moscow, Leningrad. Gidrometioizdat, (1969).
Google Scholar
[10]
GOST 24482-80. Macroclimatic regions of the world with tropic climate. Regionalizing and statistical parameters of climatic factors for technical purposes, Moscow, Izdatelstvo Standartov, (1981).
Google Scholar
[11]
GOST 9.401-91. Unified system of corrosion and ageing protection. Paint coatings. General requirements and methods of accelerated tests on resistance to the action of climatic factors. Moscow, Standartinform, (2007).
Google Scholar
[12]
GOST 30973-2002. Polyvinylchloride profiles for windows and doors. Method of determination of resistance to climatic effects and estimation of life circle. Moscow, Gosstroy Rossii, GUP TsPP, (2003).
Google Scholar
[13]
GOST R 53338-2009. Vapour-permeable self-expanding and self-adhesive tapes for building application. Specifications. Moscow, Standartinform, (2009).
Google Scholar
[14]
G.A. Andrikson, Z.V. Kaliroze, U.S. Urzhutsev Prognozirovanie polzuchesti polimernykh materialov pri sluchaynykh processakh izmeneniya nagruzok i temperaturno-vlazhnostnykh usloviy okruzhayushchey sredy, Creep prediction of polymer materials for random processes of changing loads, and temperature and humidity ambient conditions, Mekhanika polimerov, 1976, no. 4, pp.616-621.
Google Scholar
[15]
GOST 9.707-81. Unified system of corrosion and ageing protection. Polymeric materials. Methods of accelerated climatic ageing tests, Moscow, Izdatelstvo Standartov, (1982).
Google Scholar
[16]
R.D. Maksimov, E.A. Sokolov, V.P. Mochalov, Vliyanie temperatury i vlazhnosti na polzuchest polimernykh materialov, The influence of temperature and humidity on creep of polymer materials, Mekhanika polimerov. 1975. no. 3. pp.393-399.
Google Scholar
[17]
J. Voigt, Stabilizatsiya sinteticheskikh polimerov protiv deystviya sveta i tepla // Stabilization of synthetic polymers against light and heat. Leningrad, Khimiya, (1972).
Google Scholar
[18]
M.R. Pavlov, E.V. Nikolaev, N.P. Andreeva, S.L. Barbotko, K voprosu o metodike otsenki stoykosti polimernykh materialov k vozdeystviyu solnechnogo izlucheniya, On the evaluation procedure for resistance of polymer materials to solar radiation (overview), Available at: http://viam-works.ru/ru/articles?art_id=98.
Google Scholar
[19]
V.V. Maslov, Vlagostoykost yelektricheskoy izolyatsii, Water resistance of electric insulation, Moscow, Energiya, (1973).
Google Scholar
[20]
M.M. Mikhaylov, Vlagopronitsaemost organicheskikh diyelektrikov, Moisture permeability of organic dielectrics. Moscow, Gosyenergoizdatelstvo, (1960).
Google Scholar