[1]
G.V. Lepesh, Yenergosberezhenie v sistemakh zhizneobespecheniya zdaniy i sooruzheniy, Energy saving in building and facility utility systems. Saint Petersburg, SPbGEU, (2014).
Google Scholar
[2]
G.V. Lepesh, S.K. Luneva, T.V. Potemkina, Mekhanizm realizatsii energosberegayushchikh meropriyatiy v kommunalnoy energetike gorodov Rossii, The mechanism of realization of energy saving actions in municipal power of the cities of Russia. Tekhniko-tekhnologicheskie problemy servisa, 2017, no. 3, pp.56-58.
Google Scholar
[3]
Lepesh G.V. Tekhnika i tekhnologiya zhizneobespecheniya zdaniy i sooruzheniy, Methods and technology in essential services for buildings and facilities. Saint Petersburg, SPbGEU, (2014).
Google Scholar
[4]
N.N. Pavlov Starenie plastmass v estestvennykh i iskusstvennykh usloviyakh, Natural and artificial ageing of plastics. Moscow, Khimiya, (1982).
Google Scholar
[5]
G. Kausch, Razrushenie polimerov, Polymer fracture. Moscow, Mir, (1981).
Google Scholar
[6]
L.N. Shafigullin, N.V. Romanova, I.F. Gumerov, G.R. Shafugullina, A.R. Ibragimov, A.I. Nizamova, Aspects of using accelerated weather testing methods for polymeric materials, IOP Conference Series: Materials Science and Engineering. 412 (2018) 012069.
DOI: 10.1088/1757-899x/412/1/012069
Google Scholar
[7]
Sulejmanov A M 2006 Experimental and theoretical basics of prediction and increase in durability of construction soft shell materials. Abstract doctor of Technical Sciences, Kazan: Kazan State University of Architecture and Civil Engineering.
Google Scholar
[8]
R.D. Maksimov, E.A. Sokolov, V.P. Mochalov, Vliyanie temperatury i vlazhnosti na polzuchest polimernykh materialov, The influence of temperature and humidity on creep of polymer materials, Mekhanika polimerov, 1975, no. 3, pp.393-399.
Google Scholar
[9]
Voigt J. Stabilizatsiya sinteticheskikh polimerov protiv deystviya sveta i tepla, Stabilization of synthetic polymers against light and heat. Leningrad, Khimiya, (1972).
Google Scholar
[10]
G.M. Bartenev, S.Ya. Frenkel, Fizika polimerov, Physics of polymers, Leningrad, Khimiya, (1990).
Google Scholar
[11]
G.A. Andrikson, Z.V. Kaliroze, U.S. Urzhutsev, Prognozirovanie polzuchesti polimernykh materialov pri sluchaynykh processakh izmeneniya nagruzok i temperaturno-vlazhnostnykh usloviy okruzhayushchey sredy, Creep prediction of polymer materials for random processes of changing loads, and temperature and humidity ambient conditions. Mekhanika polimerov, 1976, no. 4, pp.616-621.
Google Scholar
[12]
V.R. Regel, A.I. Sloutsker, E.K. Tomashevsky, Kineticheskaya priroda prochnosti tverdykh tel, Kinetic nature of the strength of solids, Moscow, Nauka, (1974).
Google Scholar
[13]
E. Baymuratov, Vliyanie mekhanicheskogo napryazheniya na termo-, foto- i radiatsionno-okislitelnuyu destruktsiyu voloknoobrazuyushchikh polimerov i puti ikh stabilizatsii. Avtoref. diss. cand. tekhn. Nauk, Influence of stress on thermal, photo, and radiation-induced oxidative degradation of fiber-forming polymers and methods of their stabilization. Abstr. cand. eng. sci. diss. Tashkent, Tashkent Polytechnic Institute, (1986).
Google Scholar
[14]
A.M. Kochnev, R.R. Spiridonova, S.S. Galibeev, Khimiya vysokomolekulyarnykh soedineniy, Chemistry of macromolecular compounds. Kazan, Kazan State Technological University, (2010).
Google Scholar
[15]
Yu.S. Urzhumtsev, R.D. Maksimov, Prognostika deformativnosti polimernykh materialov, Prognostics of stress-strain performance of polymer materials. Riga, Zinatne, (1975).
Google Scholar
[16]
V.V. Maslov, Vlagostoykost yelektricheskoy izolyatsii, Water resistance of electric insulation. Moscow, Energiya, (1973).
Google Scholar
[17]
M.M. Mikhaylov, Vlagopronitsaemost organicheskikh diyelektrikov, Moisture permeability of organic dielectrics, Moscow, Gosyenergoizdatelstvo, (1960).
Google Scholar
[18]
Information at http://www.tebo.ru/.
Google Scholar
[19]
Information at https://www.sibur.ru/TomskNeftehim/services/.
Google Scholar
[20]
Information at https://truboplast-a.ru/.
Google Scholar
[21]
Information at http://xn--j1agcjjg.xn--p1ai/katalog1/truby-ppr.
Google Scholar
[22]
GOST R 29127-91 (ISO 7111-87). Plastics. Thermogravity of polymers. Moscow, Standartinform, (1991).
Google Scholar
[23]
GOST R 55134-2012 (ISO 11357-1:2009). Plastics. Differential scanning calorimetry (DSC). Part 1. General principles. Moscow, Standartinform, (2012).
Google Scholar
[24]
GOST R 56724-2015 (ISO 11357-3:2011). Plastics. Differential scanning calorimetry (DSC). Part 3. Determination of temperature and enthalpy of melting and crystallization. Moscow, Standartinform, (2016).
DOI: 10.3403/30177315u
Google Scholar
[25]
GOST R 56756-2015 (ISO 11357-6:2008). Plastics. Differential scanning calorimetry (DSC). Part 6. Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT). Moscow, Standartinform, (2016).
DOI: 10.3403/30161722u
Google Scholar
[26]
Yu.K. Godovsky, Teplofizicheskie metody issledovaniya polimerov, Thermophysical analysis of polymers. Moscow, Khimiya, (1976).
Google Scholar
[27]
GOST 32415-2013. Pressure thermoplastic pipes and their fittings for water supply and heating systems. General specifications. Moscow, Standartinform Publ., (2014).
Google Scholar
[28]
Specification TU 2248-032-00284581-98. Pressure polypropylene copolymer pipes and their fittings for cold and hot water supply and heating systems. Sanitary Engineering Research Institute.
Google Scholar