[1]
F. Bergaya, B.K.G. Theng, G. Lagaly, Handbook of Clay Science, Elsevier Science, Amsterdam, (2006).
Google Scholar
[2]
V.M. Goldberg, N.P. Skvortsov, Permeability and filtration in clays, Nedra, Moscow, (1986).
Google Scholar
[3]
J. Wei, R. Zhu, J. Zhu et al, Simultaneous sorption of crystal violet and 2-naphthol to bentonite with different CECs, J. of Hazard. Mat. 166 (2009) 195–199.
DOI: 10.1016/j.jhazmat.2008.11.004
Google Scholar
[4]
V.V. Krupskaya, S.V. Zakusina, E.A. Tyurina et al, Transformation of the structure and adsorption properties of montmorillonite under thermochemical action, Geochemistry. 64 (2019) 300–319.
Google Scholar
[5]
A.A. Sabitov, Deposits of bentonites of the Republic of Tatarstan: Geology and Genesis, directions of use of raw materials, Georesursy. 1 (2015) 38–43.
DOI: 10.18599/grs.63.4.6
Google Scholar
[6]
I.V. Dobrynin, Mechanical alloying methods in the field of efficient production of bentonite powders for drilling, Oil. Gas. Innovations 10 (2009) 23–28.
Google Scholar
[7]
D. Manikandan, R.V. Mangalaraja, S. Ananthakumar, T. Sivakumar, Synthesis of metal intercalated clay catalysts for selective hydrogenation reactions, Catalysis in Industry. 4 (2012) 215–230.
DOI: 10.1134/s2070050412040125
Google Scholar
[8]
S. Morfis, C. Philippopoulos, N. Papayannakos, Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO, Appl. Clay Sci. 13 (1998) 203–212.
DOI: 10.1016/s0169-1317(98)00022-2
Google Scholar
[9]
M.N. Timofeeva, V.N. Panchenko, V.V. Krupskayaet al, Effect of nitric acid modification of montmorillonite clay on synthesis of sotketal from glycerol and acetone, Catal. Commun. 90 (2017) 65–69.
DOI: 10.1016/j.catcom.2016.11.020
Google Scholar
[10]
M. Eloussaief, M. Benzina, Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions, J. of Hazard. Mat. 178 (2010) 753–757.
DOI: 10.1016/j.jhazmat.2010.02.004
Google Scholar
[11]
A.M. Akimbaeva, E.E. Ergozhin, Estimation of structural and sorption characteristics of activated bentonite, Colloid J. 69 (2007) 437–443.
DOI: 10.1134/s1061933x07040011
Google Scholar
[12]
Р. Komadel, Chemically modified smectites, Clay Miner. 38 (2003) 127–138.
DOI: 10.1180/0009855033810083
Google Scholar
[13]
Р. Komadel, Acid activated clays: Materials in continuous demand, Appl. Clay Sci. 131 (2016) 84–99.
DOI: 10.1016/j.clay.2016.05.001
Google Scholar
[14]
I.A. Zhenzhurist, A.E. Buntin, Influence of additives of hydrosols of oxides of aluminum and silicon on properties of molding mixture, Foundry production. 8 (2011) 36–40.
Google Scholar
[15]
A.E. Buntin, I.A. Zhenzhurist, O.S. Sirotkin, R.H. Khuziakhmetov, Technology of modification of natural aluminosilicates by nanosols of aluminum and silicon oxides,Herald of Technological University. 21 (2018) 66–70.
Google Scholar
[16]
O.S. Sirotkin, R.O. Sirotkin, A.M. Trubacheva, On the necessity and procedure of taking into account the metallic component of a heteronuclear bond, Russ. J. Inorg. Chem. 50 (2005) 67–71.
Google Scholar
[17]
O.S. Sirotkin, R.O. Sirotkin, Chemistry (Fundamentals of unified chemistry), KNORUS, Moscow, (2017).
Google Scholar
[18]
V.V. Tarasov, Problems of physics of glass, Stroizdat, Moscow, (1979).
Google Scholar
[19]
N.A. Medvedeva, O.S. Sitewe, V.V. Seredin, Sorption capacity of clays subjected to compression, Heraldof PNRPU. 18 (2018) 118–128.
Google Scholar
[20]
P. Larkin, Infrared and raman spectroscopy: principles and spectral interpretation, Elsevier, (2011).
Google Scholar