[1]
C.C. Koch, I.A. Ovid'ko, S. Seal, S. Veprek, Structural nanocrystalline materials: Fundamentals and applications, Cambridge, Cambridge University Press, (2007).
Google Scholar
[2]
P. Verleysen, H. Lanjewar, Dynamic high pressure torsion: A novel technique for dynamic severe plastic deformation, Journal of Materials Processing Technology, 276 (2020) 116393.
DOI: 10.1016/j.jmatprotec.2019.116393
Google Scholar
[3]
P. Wang, T. Yin, S. Qu On the grain size dependent working hardening behaviors of severe plastic deformation processed metals, Scripta Materialia, 178 (2020) 171-175.
DOI: 10.1016/j.scriptamat.2019.11.028
Google Scholar
[4]
Y. Qi, A. Kosinova, A.R. Kilmametov, B.B. Straumal, E. Rabkin, Stabilization of ultrafine-grained microstructure in high-purity copper by gas-filled pores produced by severe plastic deformation, Scripta Materialia, 178 (2020) 29-33.
DOI: 10.1016/j.scriptamat.2019.10.050
Google Scholar
[5]
G.K. Manjunath, G.V. Preetham Kumar, K. Udaya Bhat, Evolution of Tribological Properties of Cast Al–10Zn–2Mg Alloy Subjected to Severe Plastic Deformation, Lecture Notes in Mechanical Engineering, 2020 165-175.
DOI: 10.1007/978-981-13-8767-8_13
Google Scholar
[6]
S. Kadiyan, B.S. Dehiya, Effects of severe plastic deformation by ECAP on the microstructure and mechanical properties of a commercial copper alloy, Materials Research Express, 6(1) (2019) 16570.
DOI: 10.1088/2053-1591/ab4a44
Google Scholar
[7]
E. Rabkin, V. Skripnyuk, Y. Estrin, Ultrafine-Grained Magnesium Alloys for Hydrogen Storage Obtained by Severe Plastic Deformation, Frontiers in Materials, 6 (2019) 240.
DOI: 10.3389/fmats.2019.00240
Google Scholar
[8]
Y. Yin, W. Jia, S. Li, C. Mao, Y. Ying, X. Mao, Y. Zhao, Mechanical Behavior of Nanostructured Metallic Materials Prepared by Severe Plastic Deformation, Materials China, 38(10) (2019) 1030-1036.
Google Scholar
[9]
V. Sheremetyev, A. Kudryashova, V. Cheverikin, A. Korotitskiy, S. Galkin, S. Prokoshkin, V. Brailovski, Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: Microstructure, texture and functional properties, Journal of Alloys and Compounds, 800 (2019) 320-326.
DOI: 10.1016/j.jallcom.2019.06.041
Google Scholar
[10]
B.V. Karpov, P.V. Patrin, S.P. Galkin, E.A. Kharitonov, I.B. Karpov, Radial-Shear Rolling of Titanium Alloy VT-8 Bars with Controlled Structure for Small Diameter Ingots (≤200 mm), Metallurgist, 61(9-10) (2018) 884-890.
DOI: 10.1007/s11015-018-0581-6
Google Scholar
[11]
X. Yan, X. Meng, L. Luo, Y. Jing, G. Yi, J. Lu, Y. Liu, Mechanical behaviour of AZ31 magnesium alloy with the laminate and gradient structure, Philosophical Magazine, 99(24) (2019) 3059-3077.
DOI: 10.1080/14786435.2019.1660009
Google Scholar
[12]
Y. Gong, J. Gu, S. Ni, H. Wu, M. Song, A good combination of strength and ductility of ultra-coarse-grained Cu-Al alloy with coarse-grained surface layer via pre-torsional treatment, Micron, 129 (2020) 102783.
DOI: 10.1016/j.micron.2019.102783
Google Scholar
[13]
M. Jamalian, D.P. Field, Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading, Journal of Materials Science and Technology, 36 (2020) 45-49.
DOI: 10.1016/j.jmst.2019.06.013
Google Scholar
[14]
G.I. Raab, L.A. Simonova, G.N. Aleshin, Tailoring the gradient ultrafine-grained structure in low-carbon steel during drawing with shear, Metalurgija, 55(2) (2016) 177–180.
Google Scholar
[15]
T.H. Fang, W.L. Li, N.R. Tao, K. Lu Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper, Science, 331(6024) (2011) 1587–1590.
DOI: 10.1126/science.1200177
Google Scholar
[16]
G.I. Raab, I.S. Kodirov, G.N. Aleshin, A.G. Raab, N.K. Tsenev, Influence of special features of the gradient structure formation during severe plastic deformation of alloys with different types of a crystalline lattice, Vestnik of Nosov Magnitogorsk State Technical University, 17(1) (2019) 64–75.
DOI: 10.18503/1995-2732-2019-17-1-64-75
Google Scholar
[17]
A. Nayzabekov, S. Lezhnev, E. Panin, A. Arbuz, T. Koinov, Simulation of radial-shear rolling of austenitic stainless steel AISI-321, Journal of Chemical Technology and Metallurgy, 54(5) (2019) 1086-1094.
DOI: 10.37904/metal.2019.685
Google Scholar
[18]
A.B. Naizabekov, S.N. Lezhnev, E.A. Panin, A.S. Arbuz, Computer simulation of microstructure evolution in radial shear rolling using Simufact Forming software and the material database Matilda, XIX International scientific conference New technologies and achievements in metallurgy, material engineering, production engineering and physics,, Częstochowa, 2018 31-34.
DOI: 10.4028/www.scientific.net/kem.716.614
Google Scholar
[19]
R.A. Andrievsky, Nanomaterials based on metal in extreme conditions. Textbook, M.: Knowledge Laboratory, (2016).
Google Scholar
[20]
A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, I. Volokitina, The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling, Physica Scripta, 94(10) (2019) 105702.
DOI: 10.1088/1402-4896/ab1e6e
Google Scholar