[1]
S. Kang, K. Kim, Y. Son, S.-J. Lee, Application of the Quenching and Partitioning (Q&P) Process to D6AC Steel, ISIJ International. 56 (2016) 2057–(2061).
DOI: 10.2355/isijinternational.isijint-2016-257
Google Scholar
[2]
G. Baozhu, G. Krauss, The effect of low-temperature isothermal heat treatments on the fracture of 4340 steel, Journal of Heat Treating. 4 (1986) 365–372.
DOI: 10.1007/bf02833092
Google Scholar
[3]
A.D. Clark, D.O. Northwood, R.J. Bowers, X. Sun, P. Bauerle, Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels, SAE International Journal of Materials Manufacturing. 6 (2013) 146-153.
DOI: 10.4271/2013-01-0173
Google Scholar
[4]
J. Feng, T. Frankenbach, M. Wettlaufer Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature, Materials Science and Engineering A. 683 (2017) 110-115.
DOI: 10.1016/j.msea.2016.12.013
Google Scholar
[5]
S.A. Sajjadi, S.M. Zebarjad, Isothermal transformation of austenite to bainite in high carbon steels, Journal of Materials Processing Technology. 189 (2007) 107-113.
DOI: 10.1016/j.jmatprotec.2007.01.011
Google Scholar
[6]
M. Atkins, Atlas of continuous cooling transformation diagrams for engineering steels, M. Atkins. UK: British Steel Corporation, (1980).
Google Scholar
[7]
G.F. Vander Voort, Atlas of Time-Temperature Diagrams for Irons and Steels, USA: ASM Int., (1991).
Google Scholar
[8]
M.V. Maisuradze, M.A. Ryzhkov, O.A. Surnaeva, Transformations of supercooled austenite in promising high-hardenability machine steels, Metal Science and Heat Treatment. 60 (2018) 339-347.
DOI: 10.1007/s11041-018-0281-7
Google Scholar
[9]
M.V. Maisuradze, M.A. Ryzhkov, Thermal Stabilization of Austenite During Quenching and Partitioning of Austenite for Automotive Steels, Metallurgist. 62 (2018) 337-347.
DOI: 10.1007/s11015-018-0666-2
Google Scholar
[10]
J.G. Speer, E. Pereloma, D.V. Edmonds, Phase transformations in quenched and partitioned steels. In: Phase transformations in steels Cambridge: Woodhead Publishing Limited, (2012) 247-270.
DOI: 10.1533/9780857096111.2.247
Google Scholar
[11]
J.G. Speer, E. De Moor, A.J. Clarke Critical Assessment 7: Quenching and partitioning, Materials Science and Technology. 31 (2015) 3-9.
Google Scholar
[12]
G. Gao, H. Zhang, Z. Tan, W. Liu, B. Bai, A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching–partitioning–tempering process, Materials Science and Engineering: A. 559 (2013) 165-169.
DOI: 10.1016/j.msea.2012.08.064
Google Scholar
[13]
H. Zhang, D. Ponge, D. Raabe, Superplastic Mn–Si–Cr–C duplex and triplex steels: Interaction of microstructure and void formation, Materials Science and Engineering: A. 610 (2014) 355-369.
DOI: 10.1016/j.msea.2014.05.061
Google Scholar
[14]
A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han, N. Kheradmand, Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process, Materials Science and Engineering A. 725 (2018) 341-349.
DOI: 10.1016/j.msea.2018.04.042
Google Scholar
[15]
H. Guo, G. Gao, X. Gui, R.D.K. Misra, B. Bai, Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation, Materials Science and Engineering: A. 667 (2016) 224-231.
DOI: 10.1016/j.msea.2016.05.004
Google Scholar
[16]
Y.-H. Yang, M.-Q. Wang, J.-C. Chen, H. Dong Microstructure and Mechanical Properties of Gear Steels After High Temperature Carburization, Journal of Iron and Steel Research International. 20 (2013) 140–145.
DOI: 10.1016/s1006-706x(13)60227-7
Google Scholar
[17]
A.S. Ivanov, S.K. Greben'kov, M.V. Bogdanova, Optimization of the Process of Carburizing and Heat Treatment of Low-Carbon Martensitic Steels, Metal Science and Heat Treatment. 58. (2016) 116–119.
DOI: 10.1007/s11041-016-9973-z
Google Scholar
[18]
A.A. Walvekar, F. Sadeghi, Rolling contact fatigue of case carburized steels, International Journal of Fatigue. 95 (2017) 264–281.
DOI: 10.1016/j.ijfatigue.2016.11.003
Google Scholar
[19]
K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, Journal of the Iron and Steel Institute. 203 (1965) 721-727.
Google Scholar
[20]
C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels, Journal of Materials Processing Technology. 113 (2001) 556-562.
DOI: 10.1016/s0924-0136(01)00625-2
Google Scholar