Isothermal Heat Treatment of the Low-Carbon Martensitic Steel

Article Preview

Abstract:

A study of the low-carbon steel with high hardenability was carried out. The steel contained the following alloying elements, wt. %: C – 0.20; Cr – 2.0; Mn – 2.0; Si – 1.04 Ni – 1.0; Mo – 0.3. The quenching – partitioning treatment of the studied steel was implemented. The microstructure of the steel consisted of the tempered martensite laths, bainite and martensite-austenite regions. The amount of the residual austenite and the carbon concentration in the residual austenite were estimated. The possibility of the quenching – partitioning treatment of the carburized steel was shown.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

264-268

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kang, K. Kim, Y. Son, S.-J. Lee, Application of the Quenching and Partitioning (Q&P) Process to D6AC Steel, ISIJ International. 56 (2016) 2057–(2061).

DOI: 10.2355/isijinternational.isijint-2016-257

Google Scholar

[2] G. Baozhu, G. Krauss, The effect of low-temperature isothermal heat treatments on the fracture of 4340 steel, Journal of Heat Treating. 4 (1986) 365–372.

DOI: 10.1007/bf02833092

Google Scholar

[3] A.D. Clark, D.O. Northwood, R.J. Bowers, X. Sun, P. Bauerle, Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels, SAE International Journal of Materials Manufacturing. 6 (2013) 146-153.

DOI: 10.4271/2013-01-0173

Google Scholar

[4] J. Feng, T. Frankenbach, M. Wettlaufer Strengthening 42CrMo4 steel by isothermal transformation below martensite start temperature, Materials Science and Engineering A. 683 (2017) 110-115.

DOI: 10.1016/j.msea.2016.12.013

Google Scholar

[5] S.A. Sajjadi, S.M. Zebarjad, Isothermal transformation of austenite to bainite in high carbon steels, Journal of Materials Processing Technology. 189 (2007) 107-113.

DOI: 10.1016/j.jmatprotec.2007.01.011

Google Scholar

[6] M. Atkins, Atlas of continuous cooling transformation diagrams for engineering steels, M. Atkins. UK: British Steel Corporation, (1980).

Google Scholar

[7] G.F. Vander Voort, Atlas of Time-Temperature Diagrams for Irons and Steels, USA: ASM Int., (1991).

Google Scholar

[8] M.V. Maisuradze, M.A. Ryzhkov, O.A. Surnaeva, Transformations of supercooled austenite in promising high-hardenability machine steels, Metal Science and Heat Treatment. 60 (2018) 339-347.

DOI: 10.1007/s11041-018-0281-7

Google Scholar

[9] M.V. Maisuradze, M.A. Ryzhkov, Thermal Stabilization of Austenite During Quenching and Partitioning of Austenite for Automotive Steels, Metallurgist. 62 (2018) 337-347.

DOI: 10.1007/s11015-018-0666-2

Google Scholar

[10] J.G. Speer, E. Pereloma, D.V. Edmonds, Phase transformations in quenched and partitioned steels. In: Phase transformations in steels Cambridge: Woodhead Publishing Limited, (2012) 247-270.

DOI: 10.1533/9780857096111.2.247

Google Scholar

[11] J.G. Speer, E. De Moor, A.J. Clarke Critical Assessment 7: Quenching and partitioning, Materials Science and Technology. 31 (2015) 3-9.

Google Scholar

[12] G. Gao, H. Zhang, Z. Tan, W. Liu, B. Bai, A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching–partitioning–tempering process, Materials Science and Engineering: A. 559 (2013) 165-169.

DOI: 10.1016/j.msea.2012.08.064

Google Scholar

[13] H. Zhang, D. Ponge, D. Raabe, Superplastic Mn–Si–Cr–C duplex and triplex steels: Interaction of microstructure and void formation, Materials Science and Engineering: A. 610 (2014) 355-369.

DOI: 10.1016/j.msea.2014.05.061

Google Scholar

[14] A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han, N. Kheradmand, Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process, Materials Science and Engineering A. 725 (2018) 341-349.

DOI: 10.1016/j.msea.2018.04.042

Google Scholar

[15] H. Guo, G. Gao, X. Gui, R.D.K. Misra, B. Bai, Structure-property relation in a quenched-partitioned low alloy steel involving bainite transformation, Materials Science and Engineering: A. 667 (2016) 224-231.

DOI: 10.1016/j.msea.2016.05.004

Google Scholar

[16] Y.-H. Yang, M.-Q. Wang, J.-C. Chen, H. Dong Microstructure and Mechanical Properties of Gear Steels After High Temperature Carburization, Journal of Iron and Steel Research International. 20 (2013) 140–145.

DOI: 10.1016/s1006-706x(13)60227-7

Google Scholar

[17] A.S. Ivanov, S.K. Greben'kov, M.V. Bogdanova, Optimization of the Process of Carburizing and Heat Treatment of Low-Carbon Martensitic Steels, Metal Science and Heat Treatment. 58. (2016) 116–119.

DOI: 10.1007/s11041-016-9973-z

Google Scholar

[18] A.A. Walvekar, F. Sadeghi, Rolling contact fatigue of case carburized steels, International Journal of Fatigue. 95 (2017) 264–281.

DOI: 10.1016/j.ijfatigue.2016.11.003

Google Scholar

[19] K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, Journal of the Iron and Steel Institute. 203 (1965) 721-727.

Google Scholar

[20] C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels, Journal of Materials Processing Technology. 113 (2001) 556-562.

DOI: 10.1016/s0924-0136(01)00625-2

Google Scholar