Microstructure of the Heat Treated Advanced Low Carbon Steel

Article Preview

Abstract:

The microstructure of the advanced low carbon steel with a superior hardenability was studied. The steel contained the following main alloying elements, wt. %: C – 0.20; Cr – 2.0; Mn – 2.0; Si – 1.04 Ni – 1.0; Mo – 0.3. The dilatometer investigation of the steel under consideration revealed the only phase transformation occurring during continuous cooling (0.1...30 °C/s), which started at the martensite start temperature Ms. It was shown that the isothermal treatment of the studied steel led to the bainite formation above and below Ms. The temperature of the bainite morphology shift was determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

252-257

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Fajoui, M. Kchaou, A. Sellami, S. Branchu, R. Elleuch, F. Jacquemin, Impact of residual stresses on mechanical behaviour of hot work steels, Eng. Fail. Anal., 94 (2018) 33-40.

DOI: 10.1016/j.engfailanal.2018.07.020

Google Scholar

[2] A.K. Nallathambi, Y. Kaymak, E. Specht, A. Bertram, Sensitivity of material properties on distortion and residual stresses during metal quenching processes, J. Mater. Proc. Tech., 210 (2010) 204–211.

DOI: 10.1016/j.jmatprotec.2009.09.001

Google Scholar

[3] M.V. Maisuradze, Yu.V. Yudin, M.A. Ryzhkov, Investigation and Development of Spray Cooling Device for Heat Treatment of Large Steel Forgings, Mater. Perf. Char. 3 (2014) 449-462.

DOI: 10.1520/mpc20130103

Google Scholar

[4] M.V. Maisuradze, M.A. Ryzhkov, Yu.V. Yudin, A.A. Ershov, Heat treatment technology for high-strength engineering steel variable cross-section components, Metallurgist, 58 (2014) 712-716.

DOI: 10.1007/s11015-014-9982-3

Google Scholar

[5] G. F. Vander Voort, Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, (1991).

Google Scholar

[6] L.M. Kleiner, D.M. Larinin, L.V. Spivak, A.A. Shatsov, Phase and structural transformations in low-carbon martensitic steels, Phys. Met. Metal. 108 (2009) 153–160.

DOI: 10.1134/s0031918x09080080

Google Scholar

[7] V.A. Kozvonin, A.A. Shatsov, I.V. Ryaposov, M.G. Zakirova, K.N. Generalova, Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels, Phys. Met. Metal. 117 (2016) 834–842.

DOI: 10.1134/s0031918x16080081

Google Scholar

[8] D.M. Larinin, L.M. Kleiner, A.A. Shatsov, Structural strength of low-carbon martensitic steel 12Kh2G2NMFB, Met. Sci. Heat Treat., 52 (2011) 545–549.

DOI: 10.1007/s11041-011-9317-y

Google Scholar

[9] S.K. Berezin, A.A. Shatsov, P.O. Bykova, D.M. Larinin, Martensitic Transformation in Low-Carbon Steels, Met. Sci. Heat Treat. 59 (2017) 479–485.

DOI: 10.1007/s11041-017-0175-0

Google Scholar

[10] J.G. Speer, Phase transformations in quenched and partitioned steels, in: E. Pereloma, D.V. Edmonds (Eds.), Phase transformations in steels, Cambridge, Woodhead Publishing Limited, (2012).

DOI: 10.1533/9780857096111.2.247

Google Scholar

[11] S. Kang, K. Kim, Y. Son, S.-J. Lee, Application of the Quenching and Partitioning (Q&P) Process to D6AC Steel, ISIJ Int., 56 (2016) 2057–(2061).

DOI: 10.2355/isijinternational.isijint-2016-257

Google Scholar

[12] J.G. Speer, E. De Moor, A.J. Clarke, Critical Assessment 7: Quenching and partitioning, Mater. Sci. Technol., 31 (2015) 3-9.

Google Scholar

[13] M.A. Ryzhkov, A.A. Popov, Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels, Met. Sci. Heat Treat. 52 (2011) 612–616.

DOI: 10.1007/s11041-011-9329-7

Google Scholar

[14] T.A. Kop, J. Sietsma, S. Van Der Zwaag, Dilatometric analysis of phase transformations in hypo-eutectoid steels, J. Mater. Sci. 36 (2001) 519–526.

DOI: 10.1023/a:1004805402404

Google Scholar

[15] M.V. Maisuradze, Yu.V. Yudin, M.A. Ryzhkov, Numerical simulation of pearlitic transformation in steel 45Kh5MF, Met. Sci. Heat Treat. 56 (2015) 512–516.

DOI: 10.1007/s11041-015-9791-8

Google Scholar

[16] S. Samanta, P. Biswas, S. Giri, S.B. Singh, S. Kundu, Formation of bainite below the MS temperature: Kinetics and crystallography, Acta Mater, 105 (2016) 390-403.

DOI: 10.1016/j.actamat.2015.12.027

Google Scholar

[17] S. Samanta, P. Biswas, S.B. Singh, Analysis of the kinetics of bainite formation below the MS temperature, Scripta Mater, 136 (2017) 132-135.

DOI: 10.1016/j.scriptamat.2017.04.030

Google Scholar

[18] F. Peng, Y. Xu, J. Li, X. Gu, X. Wang, Interaction of martensite and bainite transformations and its dependence on quenching temperature in intercritical quenching and partitioning steels, Mater. Design, 181 (2019) 107921.

DOI: 10.1016/j.matdes.2019.107921

Google Scholar

[19] Yu.V. Yudin, M.V. Maisuradze, A.A. Kuklina, Describing the Isothermal Bainitic Transformation in Structural Steels by a Logistical Function, Steel Trans., 47 (2017) 213–218.

DOI: 10.3103/s0967091217030160

Google Scholar

[20] M.V. Maisuradze, Yu.V. Yudin, A.A. Kuklina, A Novel Approach for Analytical Description of the Isothermal Bainite Transformation in Alloyed Steels, Mater. Perform. Char., 8 (2019) 80–95.

DOI: 10.1520/mpc20170168

Google Scholar