[1]
J.E. Hatch, Aluminum: properties and physical metallurgy, M.: Metallurgy, (1989).
Google Scholar
[2]
N.A. Belov, Phase composition of industrial and promising aluminum alloys, M.: Publ. house MISiS, (2010).
Google Scholar
[3]
I.L. Konstantinov, S.B. Sidelnikov, N.N. Dovzhenko [et al.], Extrusion technology: textbook, Krasnoyarsk: SibFU, (2017).
Google Scholar
[4]
F. Ostermann, Aluminum Application Technology, M.: NP APRAL,, (2019).
Google Scholar
[5]
P.K. Saha, Aluminum extrusion technology, M.: NP APRAL,, (2015).
Google Scholar
[6]
M. Bauzer, G. Zauer, K. Zigert, Extruding. Reference manual, Transl. from German licensed by the publisher Aluminium Verlag Marketing & Kommunikation GmbH, M.: ALYuSIL MViT,, Moscow, (2009).
Google Scholar
[7]
V.N. Shcherba, Aluminum alloys extrusion, M.: Intermet Engineering, (2001).
Google Scholar
[8]
I.L. Perlin, L.Kh. Raytbarg, Theory of metal extrusion, M.: Metallurgy, (1975).
Google Scholar
[9]
M.Z. Ermanok, V.I. Feygin, Production of aluminum alloy profiles, M.: Metallurgy, (1972).
Google Scholar
[10]
M.S. Gildengorn, V.N. Kerov, G.A. Krivonos, Extrusion with welding of hollow products from aluminum alloys. M.: Metallurgy, (1972).
Google Scholar
[11]
G. Liu, J. Zhou, J. Duszczyk, FE analysis of metal flow and weld seam formation in a porthole die during the extrusion of a magnesium alloy into a square tube and the effect of ram speed on weld strength, Journal of Materials Processing Technology 200 (2008) 185-198.
DOI: 10.1016/j.jmatprotec.2007.09.032
Google Scholar
[12]
J. Yu, G. Zhao, Interfacial structure and bonding mechanism of weld seams during porthole die extrusion of aluminum alloy profiles, Materials Characterization 138 (2018) 56-66.
DOI: 10.1016/j.matchar.2018.01.052
Google Scholar
[13]
H. Chen, G. Zhao, C. Zhang, Ya. Guan, H. Liu, F. Kou, Numerical Simulation of Extrusion Process and Die Structure Optimization for a Complex Aluminum Multicavity Wallboard of High-Speed Train, Materials and Manufacturing Processes 26 (2011) 1530-1538.
DOI: 10.1080/10426914.2011.551950
Google Scholar
[14]
N.N. Dovzhenko, S.B. Sidelnikov, G.I. Vasina, Computer-aided design system for metal extrusion technology. Scientific and methodological support: monograph, GATsMiZ, Krasnoyarsk, (2000).
Google Scholar
[15]
Information on http://www.qform3d.com/.
Google Scholar
[16]
W. Libura, A. Rękas, Numerical Modelling in Designing Aluminium Extrusion, In: Aluminium alloys: new trends in fabrication and applications, InTech, (2012) 137-157.
DOI: 10.5772/51239
Google Scholar
[17]
S. Stebunov, N. Biba, A. Lishny, L. Jiao, Practical implementation of numerical modeling to optimization of extrusion die design for production of complex shape profiles, Aluminium Extrusion and Finishing 4 (2013) 20-24.
DOI: 10.4028/www.scientific.net/kem.585.85
Google Scholar
[18]
R. Codina, G. Houzeaux, H. Coppola-Owen, J. Baiges, The fixed-mesh ALE approach for the numerical approximation of flows in moving domains, Journal of Computational Physics 228 (2009) 1591-1611.
DOI: 10.1016/j.jcp.2008.11.004
Google Scholar
[19]
A.N. Levanov, V.L. Kolmogorov, S.P. Burkin [et al.], Contact friction in metal forming, M.: Metallurgy, (1976).
Google Scholar
[20]
A.M. Laptev, Y.Yu. Tkachenko, V.I. Zabin, Construction of a diagram for determining the coefficient of friction in the Levanov formula by the method of ring upsetting, Metal forming 3 (28) (2011) 129-132.
Google Scholar