[1]
The Ministry of Energy of the Russian Federation. Official website of the Ministry of Energy of the Russian Federation: statistics, Ministry of Energy of the Russian Federation. - Electronic data. 2019. https://minenergo.gov.ru/activity/statistic.
DOI: 10.21513/2410-8758-2022-3-74-87
Google Scholar
[2]
American Petroleum Institute. API 5L: Specification for Line Pipe, American Petroleum Institute. Washington, D.C.: API Publishing Services, (2004).
Google Scholar
[3]
S.I. Platov, K. B. Maslennikov, M.L. Lobanov, The effect of thermomechanical processing parameters on the microstructure of hot-rolled tubular steel plate products, Collection of materials of the international symposium Advanced Materials and Technologies,. - Brest, (2019) 516-517.
Google Scholar
[4]
M.L. Lobanov, M.L. Krasnov, V.N. Urtsev, S.V. Danilov, V.I. Pastukhov, Influence of cooling rate on the structure of low-carbon low-alloy steel after controlled thermomechanical processing, MiTOM. 1 (2019) 31–37.
DOI: 10.1007/s11041-019-00373-7
Google Scholar
[5]
N.S. Duminova, V.L. Kornilov, V.N. Urtsev, S.N. Voronkov, N.S. Sidorenko, Validation by non-destructive methods of control of sheet steel produced at the mill 5000 of PJSC MMK, Metallurgist, 12 (2018) 24-27.
DOI: 10.1007/s11015-019-00777-z
Google Scholar
[6]
V.L. Kornilov, I.Yu. Naedina, L.S. Ivanova, The development of non-destructive methods for monitoring the mechanical properties of metal in PJSC MMK, Steel., 2 (2012) 125-127.
Google Scholar
[7]
V.N. Urtsev, V.F. Rashnikov, A.A. Morozov, A.V. Kaptsan, M.F. Safronov, Yu.N. Gornostyrev, V.L. Kornilov, The formation of the structure and mechanical properties of steels, Magnitogorsk, (1998).
Google Scholar
[8]
V.N. Urtsev, V.L. Kornilov, A.V. Shmakov, M.L. Krasnov, P.A. Stekanov, S.I. Platov, E.D. Mokshin, N.V. Urtsev, V. M. Schastlivtsev, I.K. Razumov, Yu.N. Gornostyrev, Formation of the structural state of high-strength low-alloy steel during hot rolling and controlled cooling. FMM, 120 (12) (2019) 1335 – 1344.
DOI: 10.1134/s0031918x19120160
Google Scholar
[9]
C. Capdevila, F.G. Caballero, C. Garcia de Andres Capdevila, C. Modelling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel, Metallurgical and Materials Transactions A, 32 (2001) 661–669.
DOI: 10.1007/s11661-001-1001-1
Google Scholar
[10]
R.C. Rees, H.K.D.H. Bhadeshia, Bainite transformation kinetics Part 1 Modified model, Materials Science and Technology, 8 (1992) 985–993.
DOI: 10.1179/mst.1992.8.11.985
Google Scholar
[11]
M.J. Santofimia, F.G. Caballero, C. Capdevila, C.G. Matteo, C.G. de Andres, New Model for the Overall Transformation Kinetics of Bainite. Part 1: the Model, Materials Transactions, 47 (2006) 2465–2472.
DOI: 10.2320/matertrans.47.2465
Google Scholar
[12]
H. Matsuda, H.K.D.H. Bhadeshia, Kinetics of the bainite transformation, Proceedings Of The Royal. Society A, London, 460 (2004) 1707–1722.
DOI: 10.1098/rspa.2003.1225
Google Scholar
[13]
С. Tszeng, Autocatalysis In Bainite Transformations, Materials Science And Engineering A, 293 (2000) 185–190.
DOI: 10.1016/s0921-5093(00)01221-1
Google Scholar
[14]
H.K.D.H. Bhadeshia, Bainite in steels: transformation, microstructure and properties, London, UK: The Institute of Materials. (2001) 1–454.
Google Scholar
[15]
C.Liu, X.Di, C.Chen, X.Guo, Z.Xue, A bainite transformation kinetics model and its application to X70 pipeline steel, Journal of Materials Science. 50 (2015) 5079–5090.
DOI: 10.1007/s10853-015-9060-7
Google Scholar
[16]
D. Quidort, Y.J.M. Brechet, A model of isothermal and nonisothermal transformation kinetics of bainite in 0.5 % C steels, ISIJ International. 42 (2002) 1010–1017.
DOI: 10.2355/isijinternational.42.1010
Google Scholar
[17]
N.A. Chester, H.K.D.H. Bhadeshia, Mathematical modelling of bainite transformation kinetics, Journal de Phisique IV France. 7 (5) (1997) 41–47.
DOI: 10.1051/jp4:1997506
Google Scholar
[18]
D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, 7 (1959) 59–60.
DOI: 10.1016/0001-6160(59)90170-1
Google Scholar
[19]
B. Skrotzki, The course of the volume fraction of martensite vs. temperature function Mx(t), Journal de physique IV, Colloque C4, 1 (1991) 4-367.
DOI: 10.1051/jp4:1991455
Google Scholar
[20]
F. Huyan, P. Hedstrom, A. Borgenstam, Modelling of the fraction of martensite in low-alloy steels, Materials Today: Proceeding, 2S (2015) 561–564.
DOI: 10.1016/j.matpr.2015.07.347
Google Scholar
[21]
I.A. Artemiev, M.L. Krasnov, G.M. Rusakov, S.V. Danilov, Determination of thermal effects of diffusionless phase transformations in low-carbon low-alloy steels at high cooling rates, Diagnostics, Resource and Mechanics of materials and struc-tures. 6 (2018) 173–183.
DOI: 10.17804/2410-9908.2018.6.173-183
Google Scholar
[22]
M.L. Lobanov, G.M. Rusakov, V.N. Urtsev, M.L. Krasnov, E.D. Mokshin, A.V. Shmakov, S.I. Platov The thermal effect of bainitic transformation in pipe steels during accelerated cooling, Letters on Materials. 8 (3) (2018). 246–251.
DOI: 10.22226/2410-3535-2018-3-246-251
Google Scholar