Forecasting the Microstructure of a Microalloyed Steel Plate Strip

Article Preview

Abstract:

A description of the experience in the development and implementation of a model for forecasting the microstructure of rolled tubular products steel during thermomechanical processing of a semi-finished product and the relative IT-solution for the plate mill 5000 of PJSC MMK is presented. This solution is based on modeling the kinetics of structure formation in the mill technological line. The article describes briefly the result of analysis of a number of existing kinetics models of phase and structural transformations from the point of view of their application under the conditions of interest to us. An empirical study of the thermal effects of phase transformations and the influence of the heat removal mode on the kinetics of structure formation is described. The process of development of an empirical kinetics model and implementation of IT-solution, that implements this model, is also described.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

306-312

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The Ministry of Energy of the Russian Federation. Official website of the Ministry of Energy of the Russian Federation: statistics, Ministry of Energy of the Russian Federation. - Electronic data. 2019. https://minenergo.gov.ru/activity/statistic.

DOI: 10.21513/2410-8758-2022-3-74-87

Google Scholar

[2] American Petroleum Institute. API 5L: Specification for Line Pipe, American Petroleum Institute. Washington, D.C.: API Publishing Services, (2004).

Google Scholar

[3] S.I. Platov, K. B. Maslennikov, M.L. Lobanov, The effect of thermomechanical processing parameters on the microstructure of hot-rolled tubular steel plate products, Collection of materials of the international symposium Advanced Materials and Technologies,. - Brest, (2019) 516-517.

Google Scholar

[4] M.L. Lobanov, M.L. Krasnov, V.N. Urtsev, S.V. Danilov, V.I. Pastukhov, Influence of cooling rate on the structure of low-carbon low-alloy steel after controlled thermomechanical processing, MiTOM. 1 (2019) 31–37.

DOI: 10.1007/s11041-019-00373-7

Google Scholar

[5] N.S. Duminova, V.L. Kornilov, V.N. Urtsev, S.N. Voronkov, N.S. Sidorenko, Validation by non-destructive methods of control of sheet steel produced at the mill 5000 of PJSC MMK, Metallurgist, 12 (2018) 24-27.

DOI: 10.1007/s11015-019-00777-z

Google Scholar

[6] V.L. Kornilov, I.Yu. Naedina, L.S. Ivanova, The development of non-destructive methods for monitoring the mechanical properties of metal in PJSC MMK, Steel., 2 (2012) 125-127.

Google Scholar

[7] V.N. Urtsev, V.F. Rashnikov, A.A. Morozov, A.V. Kaptsan, M.F. Safronov, Yu.N. Gornostyrev, V.L. Kornilov, The formation of the structure and mechanical properties of steels, Magnitogorsk, (1998).

Google Scholar

[8] V.N. Urtsev, V.L. Kornilov, A.V. Shmakov, M.L. Krasnov, P.A. Stekanov, S.I. Platov, E.D. Mokshin, N.V. Urtsev, V. M. Schastlivtsev, I.K. Razumov, Yu.N. Gornostyrev, Formation of the structural state of high-strength low-alloy steel during hot rolling and controlled cooling. FMM, 120 (12) (2019) 1335 – 1344.

DOI: 10.1134/s0031918x19120160

Google Scholar

[9] C. Capdevila, F.G. Caballero, C. Garcia de Andres Capdevila, C. Modelling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel, Metallurgical and Materials Transactions A, 32 (2001) 661–669.

DOI: 10.1007/s11661-001-1001-1

Google Scholar

[10] R.C. Rees, H.K.D.H. Bhadeshia, Bainite transformation kinetics Part 1 Modified model, Materials Science and Technology, 8 (1992) 985–993.

DOI: 10.1179/mst.1992.8.11.985

Google Scholar

[11] M.J. Santofimia, F.G. Caballero, C. Capdevila, C.G. Matteo, C.G. de Andres, New Model for the Overall Transformation Kinetics of Bainite. Part 1: the Model, Materials Transactions, 47 (2006) 2465–2472.

DOI: 10.2320/matertrans.47.2465

Google Scholar

[12] H. Matsuda, H.K.D.H. Bhadeshia, Kinetics of the bainite transformation, Proceedings Of The Royal. Society A, London, 460 (2004) 1707–1722.

DOI: 10.1098/rspa.2003.1225

Google Scholar

[13] С. Tszeng, Autocatalysis In Bainite Transformations, Materials Science And Engineering A, 293 (2000) 185–190.

DOI: 10.1016/s0921-5093(00)01221-1

Google Scholar

[14] H.K.D.H. Bhadeshia, Bainite in steels: transformation, microstructure and properties, London, UK: The Institute of Materials. (2001) 1–454.

Google Scholar

[15] C.Liu, X.Di, C.Chen, X.Guo, Z.Xue, A bainite transformation kinetics model and its application to X70 pipeline steel, Journal of Materials Science. 50 (2015) 5079–5090.

DOI: 10.1007/s10853-015-9060-7

Google Scholar

[16] D. Quidort, Y.J.M. Brechet, A model of isothermal and nonisothermal transformation kinetics of bainite in 0.5 % C steels, ISIJ International. 42 (2002) 1010–1017.

DOI: 10.2355/isijinternational.42.1010

Google Scholar

[17] N.A. Chester, H.K.D.H. Bhadeshia, Mathematical modelling of bainite transformation kinetics, Journal de Phisique IV France. 7 (5) (1997) 41–47.

DOI: 10.1051/jp4:1997506

Google Scholar

[18] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, 7 (1959) 59–60.

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[19] B. Skrotzki, The course of the volume fraction of martensite vs. temperature function Mx(t), Journal de physique IV, Colloque C4, 1 (1991) 4-367.

DOI: 10.1051/jp4:1991455

Google Scholar

[20] F. Huyan, P. Hedstrom, A. Borgenstam, Modelling of the fraction of martensite in low-alloy steels, Materials Today: Proceeding, 2S (2015) 561–564.

DOI: 10.1016/j.matpr.2015.07.347

Google Scholar

[21] I.A. Artemiev, M.L. Krasnov, G.M. Rusakov, S.V. Danilov, Determination of thermal effects of diffusionless phase transformations in low-carbon low-alloy steels at high cooling rates, Diagnostics, Resource and Mechanics of materials and struc-tures. 6 (2018) 173–183.

DOI: 10.17804/2410-9908.2018.6.173-183

Google Scholar

[22] M.L. Lobanov, G.M. Rusakov, V.N. Urtsev, M.L. Krasnov, E.D. Mokshin, A.V. Shmakov, S.I. Platov The thermal effect of bainitic transformation in pipe steels during accelerated cooling, Letters on Materials. 8 (3) (2018). 246–251.

DOI: 10.22226/2410-3535-2018-3-246-251

Google Scholar