Selection of Rational Deformation Pressing Modes in a Special Device

Article Preview

Abstract:

Various types of deformed semi-finished products are prepared from aluminum alloys, such as plates, sheets, tapes, foil, panels, profiles, pipes, rods, forged pieces, wires. These semi-finished products are obtained by processing ingots of continuous casting by pressure - rolling, rolling-off, pressing, forging, stamping or drawing. Pressed semi-finished products are made of aluminum alloys in the majority of cases. The work examines the study of the evolution of the half-finished products microstructure at different stages of their manufacturing in several passes and shows the possibility of obtaining strips of fine-grained structure using pressing in a special device. Also, the research established that, in the material of half-finished product from the AD31 aluminum alloy the smooth fine-grained structure is formed with grains of 6 - 17 μm, which leads to an increase in the strength properties of the alloy and to a preservation of good plasticity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

319-323

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alyuminij. Svojstva i fizicheskoe metallovedenie. Spravochnik. Dzh.E.Hetch. Moskva, Metallurgiya, (1989).

Google Scholar

[2] V.V. Antipov, Yu.Yu. Klochkova, V.A. Romanenko Sovremennye alyuminievye i alyuminij-litievye splavy. Aviacionnye materialy i tehnologii. (2017) 195-211.

Google Scholar

[3] B.A. Kolachev, V.A. Livanov, V.I. Elagin Metallovedenie i termicheskaya obrabotka cvetnyh metallov i splavov. M.: Metallurgiya, (1972).

Google Scholar

[4] L.B. Ber, Zakonomernosti formirovaniya struktury v deformirovannyh polufabrikatah iz alyuminievyh splavov/ Tehnologiya legkih splavov. 1 (2014) 5-31.

Google Scholar

[5] Yu.M. Vainblat, S.Yu. Klepachevskaya, P.Sh. Lancman Diagrammy strukturnyh sostoyanij i rekristallizacii goryachedeformirovannogo splava AK411977, t. 44, vyp. 4 pp.834-842.

Google Scholar

[6] E.K. Uzenev, V.D. Zhukov, B.D. Galackij, Vliyanie shemy kovki na Mehanicheskie svojstva pokovok iz alyuminievyh splavov, Tehnologiya Legkih splavov/ 3 (1976) 49-55.

Google Scholar

[7] Yu.M. Vainblat, N.N. Averkina, I.B. Rodina, Prichina anizotropii Mehanicheskih svojstv pressovannyh polufabrikatov iz alyuminievyh Splavov, Tehnologiya legkih splavov, VILS, (1972).

Google Scholar

[8] Patent JP2009280839 Yaponiya. High Strength And High Formability Al-Mg-Mn Based Aluminum Alloy Sheet And Method For Producing The Same Opubl. 2009-12-03.

Google Scholar

[9] J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum. Materials Science and Engineering. (2004) 55–59.

DOI: 10.1016/j.msea.2004.03.076

Google Scholar

[10] V.A. Livanova, Alyuminievye splavy. Struktura i svojstva polufabrikatov iz alyuminievyh splavov: Spravochnik, M.: Metallurgiya, (1974).

Google Scholar

[11] Yu.N. Loginov, O.F. Degtyaryova, Vliyanie skorosti deformacii na effekt strukturnogo uprochneniya pressovannyh trub iz alyuminievogo splava 6061. Tehnologiya legkih splavov. 4 (2007) 123-127.

Google Scholar

[12] Yu.M. Vainblat, Sharshagin N.A., Varfolomeeva E.A. Kinetika spontannoj rekristallizacii, Tehnologiya legkih splavov. 3 (1981) 14-17.

Google Scholar

[13] S.A. Court, K.M. Gatenby, D.J. Lloyd, Factors affecting the strength and formability of alloys based on Al–3 wt.% Mg. Materials Science and Engineering A: 319–321 (2001) 443–447.

DOI: 10.1016/s0921-5093(00)02018-9

Google Scholar

[14] S.S. Gorelik, Rekristallizaciya metallov i splavov. M.: Metallurgiya, (1978).

Google Scholar

[15] Yu.M. Vainblat, P.Sh.Lancman, N.A. Sharshagin, Diagrammy strukturnyh sostoyanij goryachedeformirovannyh alyuminievyh splavov. Izvestiya vuzov. Cvetnaya metallurgiya, 4 (1974) 155-160.

Google Scholar

[16] S.A. Mashekov, A.E. Nurtazaev, A.E. Uderbaeva, A.S. Mashekova. Chislennoe modelirovanie metodom konechnyh elementov NDS zagotovki pri deformirovanii v specialnom ustrojstve (soobshenie 1).Almaty, Vestnik kazntu im.K.I. Satpaeva, 1(77) (2010) 80-83.

Google Scholar

[17] S.A. Mashekov, A.E. Nurtazaev, A.E. Uderbaeva, A.S. Mashekova Chislennoe modelirovanie metodom konechnyh elementov NDS zagotovki pri deformirovanii v specialnom ustrojstve (soobshenie 2) Almaty, Vestnik kazntu im.K.I. Satpaeva, 2(78) (2010) 108-112.

Google Scholar

[18] S.A. Mashekov, A.E. Nurtazaev, A.E. Uderbaeva, A.S. Mashekova. Chislennoe modelirovanie metodom konechnyh elementov NDS zagotovki pri deformirovanii v specialnom ustrojstve (soobshenie 3)Almaty, Vestnik kazntu im.K.I. Satpaeva, 4(80) (2010) 201-203.

Google Scholar

[19] A.B. Telesheva, A.T. Turdalyev, Henryk Dyja, Ye.V. Chumakov, A.E. Uderbayeva and E.A. Tussupkaliyeva, Quality control of sections in the process of Their extrusionint. J. Chem. Sci.: 13(2) (2015) 1076-1084.

Google Scholar

[20] V.I. Dobatkin, Slitki alyuminievyh splavov. M.: Metallurgizdat, (1960).

Google Scholar

[21] Patent WO0052219. AA6000 ALUMINIUM SHEET METHOD. Marshall Graeme John [Gb]; Herbst Karl Albert [De]; Heinze Martin [De]; Hamerton Richard. Zayavitel applalcan INT LTD [CA]. Opubl. 2000-09-08.

Google Scholar

[22] A. Vorobev, E.N. Bich, R.M. Sizova, Struktura i mehanicheskie svojstva poligonizovannyh prutkov iz splava D16// Metallovedenie i termicheskaya obrabotka splavov, 6 (1975) 73-75.

Google Scholar

[23] S.N. Lezhnev, G.G. Kurapov, A.V. Volokitin, I.E. Volokitina, A.E. Uderbaeva, Evolyuciya mikrostruktury stali pri sovmeshennom processe «pressovanie-volochenie» Doklady NAN RK, 2 (2017) 103-109.

Google Scholar

[24] Yu.N. Loginov, A.G. Illarionov, Neravnomernost struktury pressovannyh trub iz alyuminievogo splava amg6. Izvestiya vysshih uchebnyh zavedenij. Cvetnaya metallurgiya.6 (2013) 35-40.

Google Scholar

[25] H. Arild Clausen, Tore Borvik, Odd S. Hopperstad, Ahmed Benallal, Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering, A: 364 (2004) 260–272.

DOI: 10.1016/j.msea.2003.08.027

Google Scholar