The Effect of Microstructure and Temperature Gradient on Radiation-Induced Swelling of Austenitic Steel

Article Preview

Abstract:

Radiation porosity through-thickness of the fuel pin cladding, made of 16Cr-19Ni-2Mo-2Mn-Nb-Ti-V-P-B steel, has been studied with scanning electron microscopy using backscattered electron (BSE) detector. The examined sample was irradiated at a temperature around 480 °С up to an integral damage dose of 87 dpa. It was shown that, due to the temperature gradient through the cladding thickness, the average size of radiation voids reduces, and their concentration increases from internal to external surface. Local nonuniformity of radiation porosity is observed in regions close to internal and external surfaces. It was shown that, non-uniformity of radiation porosity is determined by the material structure, microtwin density and high concentration of low-angle inter-granular boundaries, in particular.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

313-318

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S. Was, Fundamentals of Radiation Materials Science. Metals and Alloys, Springer-Verlag New York, (2017).

Google Scholar

[2] M.V. Bakanov, V.V. Maltsev, N.N. Oshkanov et al., The main results of structural materials operation in BN-600 reactor cores, Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetika 1 (2011) 177−186.

Google Scholar

[3] V.S. Ageev, Yu.P. Budanov, A.G. Ioltukhovsky et al., Structural materials for Russian fast reactor cores. Current status and prospects, Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetika 2 (2009) 210−218.

Google Scholar

[4] Comprehensive Nuclear Materials, Editor-in-chief: Rudy J. M. Konings, V 1, Elsevier Ltd, Amsterdam, (2012).

Google Scholar

[5] A.V. Kozlov, E.N. Sherbakov, O.I. Osiptsov et al., Formation and evolution of radiation clusters in FCC metals at low-temperature neutron irradiation to low dpa. Inorganic Materials: Applied Research 1 (2006) 9–17.

Google Scholar

[6] A.V. Kozlov, Dependence of the concentration of point defects in the ChS-68 austenitic steel on the rate of their generation and temperature upon neutron irradiation, Phys. Met. Metallogr. 107 (2009) 534–541.

DOI: 10.1134/s0031918x09060027

Google Scholar

[7] J.O. Stiegler, The effect of thermo-mechanical treatments on void formation in irradiated stainless steel, J. Nucl. Mater. 41 (1971) 341−344.

DOI: 10.1016/0022-3115(71)90171-1

Google Scholar

[8] H.R. Brager, The effects of cold working and pre-irradiation heat treatment on void formation in neutron-irradiated type 316 stainless steel, J. Nucl. Mater. 57 (1975) 103−118.

DOI: 10.1016/0022-3115(75)90184-1

Google Scholar

[9] V.A. Krasnoselov, V.I. Prokhorov, A.N. Kolesnikov, Z.A. Ostrovskii, Effect of preliminary heat and mechanical treatment on 0Cr-16Ni-15Mo-ЗNb stainless steel, At Energy 54 (1983) 121−124.

DOI: 10.1007/bf01123292

Google Scholar

[10] H. R. Brager, F. A. Garner, E. R. Gilbert, et al. Radiation effects in breeder reactor structural materials, in Radiation Effects in Breeder Reactor Structural Materials, M. L. Bleiberg and J. W. Bennett, Eds., the Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, (1977).

DOI: 10.1520/stp38176s

Google Scholar

[11] L. Tan, T. R. Allen, J. T. Busby, Grain Boundary Engineering for Structure Materials of Nuclear Reactors, J. Nucl. Mater 441 (2013) 661–666.

DOI: 10.1016/j.jnucmat.2013.03.050

Google Scholar

[12] M. Sekine, N. Sakaguchi, M. Endo, H. Kinoshita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano, M. Kawai, Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors, J. Nucl. Mater. 414 (2011) 232−236.

DOI: 10.1016/j.jnucmat.2011.03.049

Google Scholar

[13] V.I. Pastukhov, S.А. Аverin, V.L. Panchenko, I.А. Portnykh, P.D. Freyer, L.A. Giannuzzi, F.А. Garner, Application of backscatter electrons for large area imaging of cavities produced by neutron irradiation, J. Nucl. Mater. 480 (2016) 289−300.

DOI: 10.1016/j.jnucmat.2016.07.059

Google Scholar

[14] Pastukhov V. I., Portnykh I. A., Lobanov M. L. Effect of Mesostructural Elements on Radiation-Induced Porosity in 16Cr-19Ni-2Mo-2Mn-Nb-Ti-V-P-B Austenitic Steel, Materials Science Forum 946 (2019) 357-361.

DOI: 10.4028/www.scientific.net/msf.946.357

Google Scholar

[15] M.L. Lobanov, A.S. Yourovskih, N.I. Kardonina, G.M. Rusakov, Methods of investigetion textures in materials: tutorial, Yekaterinburg, publishing house of UrFU, (2014).

Google Scholar

[16] A.V. Kozlov, I.A. Portnykh, Conditions for the achievement of the stage of stationary radiation swelling, Phys. Met. Metallogr. 103 (2007) 105–109.

DOI: 10.1134/s0031918x07010139

Google Scholar

[17] J. P. Foster, J. E. Flinn, Residual stress behavior in fast neutron irradiated SA AISI 304L stainless steel cylindrical tubing, J. Nucl. Mater. 89 (1980) 99–112.

DOI: 10.1016/0022-3115(80)90014-8

Google Scholar

[18] N. Akasaka, I. Yamagata, S. Ukai, Effect of temperature gradients on void formation in modified 316 stainless steel cladding, J. Nucl. Mater. 283-287 (2000) 169–173.

DOI: 10.1016/s0022-3115(00)00253-1

Google Scholar

[19] Séran, J. L., et al., Swelling and microstructure of neutron-irradiated Ti-modified type 316 stainless steel, in Effect of Radiation on Materials: 12th Conference, American Society for Testing and Materials Special Technical Publications 870 (1985) 233–247.

DOI: 10.1520/stp37365s

Google Scholar