[1]
P.I. Loboda, L.O. Zvorykin, V.S. Kosyuk, E.V. Soldkyiy, Analysis of prospects of development titanium reinforced with fibers of titanium diboride, resistant to dynamic loads, Technological systems, 75 (2016) 89–92.
Google Scholar
[2]
Yu.A. Nozhnitsky, The Problem of Ensuring Reliability of Gas Turbine Engines, 2018 IOP Conf. Ser.: Mater. Sci. Eng. 302 012082.
DOI: 10.1088/1757-899x/302/1/012082
Google Scholar
[3]
BabkinV.I., Lanshin A.I., Polev A.S., Fedyakin F.N. Creation of Competitive Aircraft Engines of the Years 2025-2030. Interindustry almanac, 49 (2015) 25-29.
Google Scholar
[4]
Proceeding of the 10-th National Turbine Engine HCF Conference, March 8-11, 2005, New Orlean, USA.
Google Scholar
[5]
Magerramova L.A., Nozhnitsky Yu.A., Vasilyev B.E., Kinzbursky V.S. The Use of Additive Technologies for Production of Advanced Gas-Turbine Engine Components. Technology of Light Alloys.4 (2015) 7-13.
Google Scholar
[6]
Y. M.Ahmed, K. Sahari, M. Sahari, M. Ishak, Welding of Titanium (Ti-6Al-4V) Alloys: A Review, Conference: Proceedings National Graduate Conference 2012 (NatGrad2012), Universiti Tenaga Nasional, Putrajaya Campus, 8-10 Nov 2012 At: Malaysia/Putrajaya Campus, Vol.2.
DOI: 10.7763/ijiet.2016.v6.713
Google Scholar
[7]
Hanqing Liu, Haomin Wang, Zhen Zhang et.al, Enhancing the mechanical properties of electron beam welded TC17 titanium alloy joint by post-weld heat treatment, Journal of Alloys and Compounds,Volume 810, 25, November 2019, 151937.
DOI: 10.1016/j.jallcom.2019.151937
Google Scholar
[8]
Lawrence Murr, E.V. Esquivel, S.A. Quinones, R.B. Wicker et.al, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, February, Materials Characterization 60(2) (2009) 96-105.
DOI: 10.1016/j.matchar.2008.07.006
Google Scholar
[9]
M.J. Donachie, Titanium A Technical Guide, 2nd ed. Materials Park, Ohio: ASM International, (2000).
Google Scholar
[10]
G. Lütjering and J. C. William, Titanium. Springer-Verlag Berlin Heidelberg New York, (2003).
Google Scholar
[11]
R. Pederson, R. Gaddam, and M.-L. Antti, Microstructure and mechanical behavior of cast Ti-6Al-4V with addition of boron,, Cent. Eur. J. Eng., 2 (3) (2012) 347–357.
DOI: 10.2478/s13531-012-0004-6
Google Scholar
[12]
G. Singh, R. Gaddam, V. Petley, R. Datta, R. Pederson, and U. Ramamurty, Strain-controlled fatigue in B-modified Ti-6Al-4V alloys,, Scr. Mater., 69 (9) (2013) 698–701.
DOI: 10.1016/j.scriptamat.2013.08.008
Google Scholar
[13]
G. Singh, D. V. V Satyanarayana, R. Pederson, R. Datta, and U. Ramamurty, Enhancement in creep resistance of Ti-6Al-4V alloy due to boron addition,, Mater. Sci. Eng. A, 597 (2014) 194–203.
DOI: 10.1016/j.msea.2013.12.078
Google Scholar
[14]
S. Roy, S. Suwas, S. Tamirisakandala, D. B. Miracle, and R. Srinivasan, Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B,, Acta Mater., 59 (14) (2011) 5494–5510.
DOI: 10.1016/j.actamat.2011.05.023
Google Scholar
[15]
S. Tamirisakandala, R. B. Bhat, J. S. Tiley, and D. B. Miracle, Grain refinement of cast titanium alloys via trace boron addition,, Scr. Mater.,53 (12) (2005) 1421–1426.
DOI: 10.1016/j.scriptamat.2005.08.020
Google Scholar
[16]
M.J. Bermingham, D. Kent, H. Zhan, D.H. StJohn, and M.S. Dargusch, Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions,, Acta Mater., 91 (2015) 289–303.
DOI: 10.1016/j.actamat.2015.03.035
Google Scholar
[17]
Maxwell and A. Hellawell, A simple model for grain refinement during solidification,, Acta Metall., 23 (2) (1975) 229–237.
DOI: 10.1016/0001-6160(75)90188-1
Google Scholar
[18]
M. J. Bermingham, S. D. Mcdonald, M. S. Dargusch, and D. H. Stjohn, Microstructure of Cast Titanium Alloys,, Mater. Forum, 31 (2007) 84–89.
Google Scholar
[19]
J. Zhu, A. Kamiya, T. Yamada, W. Shi, and K. Naganuma, Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys,, Mater. Sci. Eng. A, 339 (1–2) (2003) 53–62.
DOI: 10.1016/s0921-5093(02)00102-8
Google Scholar
[20]
J. H. Luan, Z. B. Jiao, L. Heatherly, E. P. George, G. Chen, and C. T. Liu, Effects of boron on the fracture behavior and ductility of cast Ti-6Al-4V alloys,, Scr. Mater., 100 (2015) 90–93.
DOI: 10.1016/j.scriptamat.2014.12.022
Google Scholar
[21]
S. A. Mantri, T. Torgerson, E. Ivanov, T. W. Scharf, and R. Banerjee, Effect of Boron Addition on the Mechanical Wear Resistance of Additively Manufactured Biomedical Titanium Alloy,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 49 (3) (2018) 806–810.
DOI: 10.1007/s11661-017-4454-6
Google Scholar
[22]
I. Sen, K. Gopinath, R. Datta, and U. Ramamurty, Fatigue in Ti – 6Al – 4V – B alloys,, Acta Mater. 58 (2010) 6799–6809.
DOI: 10.1016/j.actamat.2010.09.008
Google Scholar
[23]
P.I. Loboda, C.O. Zvorykin, V.L. Zvorykin, E.L. Vrzhyzhevskyi, Yu. M. Romanenko, Influence of electron-beam welding parameters on structure of reinforced composite material Тi – TiBn, Technological systems, 81 (2017) 75–81.
DOI: 10.29010/081.10
Google Scholar
[24]
P.I. Loboda, C.O. Zvorykin, V.L. Zvorykin, E.L. Vrzhyzhevskyi, T.G. Taranova, V.A. Kostin, Peculiarities of fracture of welded joints of Ti-TiB titan alloys with titan alloys, Technological systems, 87 (2019) 60–65.
DOI: 10.3390/met10040522
Google Scholar
[25]
P.I. Loboda, C.O. Zvorykin, V.L. Zvorykin, E.L. Vrzhyzhevskyi, Yu.M. Romanenko, Peculiarities of mechanical properties and structure of area of Тi–TiBn alloy welding joint with titan alloys, Technological systems, 85 (2018) 73–77.
DOI: 10.29010/081.10
Google Scholar