[1]
Yu.S. Yusfin, N.F. Pashkov, Metallurgy of iron: tutorial for institutions of higher education, third ed., IKTs Akademkniga, Moscow, 2004 (In Russian).
Google Scholar
[2]
L. Lu, J. Pan, D. Zhu, 16: Quality requirements of iron ore for iron production, in: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Woodhead Publishing, 2015, pp.475-504.
DOI: 10.1016/b978-1-78242-156-6.00016-2
Google Scholar
[3]
A. Babich, D Senk, 17: Recent developments in blast furnace iron-making technology in: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Woodhead Publishing, 2015, pp.505-547.
DOI: 10.1016/b978-1-78242-156-6.00017-4
Google Scholar
[4]
V.I. Korotich, Yu.A. Frolov, G.N. Bezdezhskiy, Agglomeration of ore materials, Ural State Technical University, Ekaterinburg, 2003 (In Russian).
Google Scholar
[5]
A.N. Dmitriev, G.Yu. Vitkina, Yu.A. Chesnokov, R.V. Petukhov, Iron Ore Materials and Coke Quality Characteristics and Quantitative Indicators of Blast Furnace Smelting, IFAC Proceedings Volumes, 46(16) (2013) 307-311.
DOI: 10.3182/20130825-4-us-2038.00025
Google Scholar
[6]
G. Gustafsson, H.-Å. Häggblad, P. Jonsén, P. Marklund, Determination of bulk properties and fracture data for iron ore pellets using instrumented confined compression experiments, Powder Technol. 241 (2013) 19-27.
DOI: 10.1016/j.powtec.2013.02.030
Google Scholar
[7]
J. Mróz, Non‐isothermal reduction as a method of determining the softening – melting temperature of iron‐ore pellets and sinters, Steel Research, 69(12) (1998) 465-468.
DOI: 10.1002/srin.199805581
Google Scholar
[8]
Sh. Wu, X. Liu, Q. Zhou, J. Xu, Ch. Liu, Low Temperature Reduction Degradation Characteristics of Sinter, Pellet and Lump Ore, J. Iron Steel Res. Int. 18(8) (2011) 20-24.
DOI: 10.1016/s1006-706x(11)60098-8
Google Scholar
[9]
A. Kemppainen, T. Fabritius, T. Paananen, O. Mattila, E. Pisilä, M. Kondrakov, Effect of adding limestone on the metallurgical properties of iron ore pellets, Int. J. Miner. Process. 141 (2015) 34-43.
DOI: 10.1016/j.minpro.2015.06.004
Google Scholar
[10]
S. Dwarapudi, C. Sekhar, I. Paul, Y. G. S. Prasad, K. Modi and U. Chakraborty, Effect of fluxing agents on reduction degradation behaviour of hematite pellets, Ironmak. Steelmak. 43(3) (2015) 180-191.
DOI: 10.1179/1743281215y.0000000030
Google Scholar
[11]
L. Yi, Zh. Huang, T. Jiang, R. Zhong, Zh. Liang, Iron ore pellet disintegration mechanism in simulated shaft furnace conditions, Powder Technol. 317 (2017) 89-94.
DOI: 10.1016/j.powtec.2017.04.056
Google Scholar
[12]
T. Umadevi, A. Kumar, P. Karthik, R. Srinidhi, M. Sambandam, Characterisation studies on swelling behaviour of iron ore pellets, Ironmak. Steelmak. 45(2) (2018) 157-165.
DOI: 10.1080/03019233.2016.1250043
Google Scholar
[13]
S.K. Sibagatullin, T.V. Maiorova, The increase in gas flow in a blast furnace with an increase in the total pressure drop in height. Vestnik of Nosov Magnitogorsk State Technical University, 33(1) (2011) 14-16 (In Russian).
DOI: 10.18503/1995-2732-2017-15-1-37-44
Google Scholar
[14]
E.V. Ovchinnikova, A.N. Shapovalov, The influence of the parameters of the blast mode on the efficiency of blast furnace smelting in the conditions of JSC Ural Steel. Bulletin of the South Ural State University. Series: Metallurgy, 13(1) (2013) 61-67 (In Russian).
DOI: 10.14529/met170403
Google Scholar
[15]
Zh. Li, Sh. Kuang, S. Liu et al. Numerical investigation of burden distribution in ironmaking blast furnace. Powder Technol. (353) 2019 385-397.
DOI: 10.1016/j.powtec.2019.05.047
Google Scholar
[16]
Q. Gao, F. Shen, G. Wei et al. Effects of MgO Containing Additive on Low-Temperature Metallurgical Properties of Oxidized Pellet. J. Iron Steel Res. Int. 20(7) (2013) 25-28.
DOI: 10.1016/s1006-706x(13)60121-1
Google Scholar
[17]
F. Shen, Q. Gao, X. Jiang et al. Effect of magnesia on the compressive strength of pellets. Int. J. Min. Met. Mater. 21(5) (2014) 431-437.
Google Scholar
[18]
G.L. Qing, C.D. Wang, E.J. Hou et al. Compressive strength and metallurgical property of low silicon magnesium pellet, J. Iron Steel Res. Int. 26(4) (2014) 7–12.
Google Scholar
[19]
J. Pal, C. Arunkumar, Y. Rajshekhar, Development on iron ore pelletization using calcined lime and MgO combined flux replacing limestone and bentonite, ISIJ Int. 54(10) (2014) 2169-2178.
DOI: 10.2355/isijinternational.54.2169
Google Scholar
[20]
E.V. Ovchinnikova, V.B. Gorbunov, A.N. Shapovalov et al. Magnesia Sinter with Flux Based on Magnesium Silicat,. Steel in Translation, 48(1) (2018) 34-38.
DOI: 10.3103/s0967091218010126
Google Scholar
[21]
A.N. Shapovalov, E.V. Ovchinnikova, N.A. Maistrenko, Effect of the type of magnesia materials on the sintering process indicators at JSC Ural Steel, Chernye Metally, (11) 2018 38-42.
Google Scholar
[22]
A.N. Shapovalov, E.V. Ovchinnikova, V.B. Gorbunov et al. The effect of the composition of magnesia flux on the sinter structure and properties, IOP Conference Series: Materials Science and Engineering 625 (2019) 012009.
DOI: 10.1088/1757-899x/625/1/012009
Google Scholar
[23]
A.N. Shapovalov, E.V. Ovchinnikova, V.B. Gorbunov, Use of magnesian fluxes of the Khalilovo deposit in sinter production, Izvestiya Ferrous Metallurgy, 62(7) (2019) 548-556 (In Russian).
DOI: 10.17073/0368-0797-2019-7-548-556
Google Scholar
[24]
R. Wang, J. Zhang, Zh. Liu et al. Interaction between iron ore and magnesium additives during induration process of pellets, Powder Technol. (36) 2020 894-902.
DOI: 10.1016/j.powtec.2019.11.006
Google Scholar