[1]
H.U. Sverdrup, K.V. Ragnarsdottir, D. Koca, Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves Resources, Conservation and Recycling. 103 (2015) 139-154.
DOI: 10.1016/j.resconrec.2015.06.008
Google Scholar
[2]
H. Buchner, D. Laner, H. Rechberger, J. Fellner, Future Raw Material Supply: Opportunities and Limits of Aluminium Recycling in Austria, Journal of Sustainable Metallurgy. 1 (2015) 253-262.
DOI: 10.1007/s40831-015-0027-3
Google Scholar
[3]
B. Lela, J. Krolo, S. Jozić, Mathematical modeling of solid-state recycling of aluminum chips, International Journal of Advanced Manufacturing Technology. 87 (2016) 1125-1133.
DOI: 10.1007/s00170-016-8569-5
Google Scholar
[4]
T. Tokarski, Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips, Journal of Materials Engineering and Performance. 25 (2016) 3252-3259.
DOI: 10.1007/s11665-016-2194-1
Google Scholar
[5]
E.N. Smirnov, V.A. Sklyar, M.V. Mitrofanov, O.E. Smirnov, V.A. Belevitin, A.N. Smirnov, Complete Evaluation of Extruded Aluminum Section and Semiproduct Mechanical Properties Under Conditions of Typical Regional Manufacturer Altek, Metallurgist. 61 (2018) 878-883.
DOI: 10.1007/s11015-018-0580-7
Google Scholar
[6]
H.T. Jeong, W.J. Kim, Comparison of hot deformation behavior characteristics between as-cast and extruded Al-Zn-Mg-Cu (7075) aluminum alloys with a similar grain size, Materials. 12 (2019) paper 3807.
DOI: 10.3390/ma12233807
Google Scholar
[7]
S. Zhang, A. Frederick, Y. Wang, M. Eller, P. McGinn, A. Hu, Z. Feng, Microstructure Evolution and Mechanical Property Characterization of 6063 Aluminum Alloy Tubes Processed with Friction Stir Back Extrusion, JOM. 71 (2019) 4436-4444.
DOI: 10.1007/s11837-019-03852-7
Google Scholar
[8]
D. Chen, K. Zhang, P. Dong, Z. Chen, Influence of Extrusion Temperature on Microstructure and Mechanical Properties of Mg-3Zn-2.5Al-2.5Ca Alloy, Journal of Hunan University Natural Sciences. 44 (2012) 14-19.
Google Scholar
[9]
M. Zhou, X. Su, L. Ren, D. Yin, G. Quan, Y. Zhang, Tensile Deformation Behavior of As-extruded Mg-3Al-3Zn-1Ti-0.6RE Magnesium Alloy at Elevated Temperature, Rare Metal Materials and Engineering. 46 (2017) 2149-2155.
Google Scholar
[10]
S. Yang, W. Wu, D. Wang, P. Deng, Effect of Extrusion Speed on the Microstructure and Tensile Properties of AZ31 Alloy, MATEC Web of Conferences. 67 (2016) paper 05022.
DOI: 10.1051/matecconf/20166705022
Google Scholar
[11]
J. Wang, Y. Lu, W. Xu, X. Li, Effect of hot extrusion process on microstructure and properties of 6061 aluminum alloy, Heat Treatment of Metals. (2016) 172-175.
Google Scholar
[12]
A. Anishchenko, V. Kukhar, V. Artiukh, O. Arkhipova, Superplastic forming of shells from sheet blanks with thermally unstable coatings, MATEC Web of Conferences. 239 (2018) paper № 06006.
DOI: 10.1051/matecconf/201823906006
Google Scholar
[13]
E.N. Smirnov, V.A. Sklyar, O.E. Smirnov, V.A. Belevitin, R.E. Pivovarov, Behavior of Structural Defects of Already-Deformed Continuous-Cast Bar on Rolling, Steel in Translation. 48 (2018) 289-295.
DOI: 10.3103/s0967091218050091
Google Scholar
[14]
E.N. Smirnov, V.A. Sklyar, O.E. Smirnov, V.A. Belevitin, R.E. Pivovarov, Research of the behavior of macrostructure defects of the pre-deformed continuous cast billets during rolling, Izvestiya Ferrous Metallurgy. 61 (2018) 399-406.
DOI: 10.17073/0368-0797-2018-5-399-406
Google Scholar
[15]
A.J. Bryant, A.P. Roger The Evaluation of Extrusion Billet from the Casthouse, Light Metal Age. 57 (1999) 80-86.
Google Scholar
[16]
C.H. Weaver, Billet Consistency via Quality Control and Comparative Evaluations, Aluminum Association, Fourth Extrusion Technology Seminar. 1 (1988) 385-389.
Google Scholar
[17]
J. Langerweger, Correlation Between Properties of Extrusion Billets, Extrudability and Extrusion Quality, Aluminum Association, Third Extrusion Technology Seminar. 1 (1984) 41-45.
Google Scholar
[18]
I. Schindler, P. Kawulok, V. Očenášek, P. Opěla, S. Rusz, R. Kawulok, Flow stress and hot deformation activation energy of 6082 aluminium alloy influenced by initial structural state, Metals. 9 (2019) paper 1248.
DOI: 10.3390/met9121248
Google Scholar
[19]
S.W. Bae, S.-H. Kim, J.U. Lee, W.-K. Jo, W.-H. Hong, W. Kim, S.H. Park, Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Al-Zn alloy through Sn addition, Journal of Alloys and Compounds. 766 (2018) 748-758.
DOI: 10.1016/j.jallcom.2018.07.028
Google Scholar
[20]
D.B. Efremov, A.A. Gerasimova, S.M. Gorbatyuk, N.A. Chichenev. Study of kinematics of elastic-plastic deformation for hollow steel shapes used in energy absorption devices, CIS Iron and Steel Review.18 (2019) 30–34.
DOI: 10.17580/cisisr.2019.02.06
Google Scholar
[21]
Y.-F. Xia, J. Zhao, L. Jiang, S. Long, T.-Y. Wang, Phenomenological Models to Predict the Flow Stress up to the Peak of as-Extruded 7050 Aluminum Alloy, High Temperature Materials and Processes. 36 (2017) 1025-1033.
DOI: 10.1515/htmp-2016-0094
Google Scholar
[22]
C. Zhang, S. Yang, C. Wang, G. Zhao, A. Gao, L. Wang, Numerical and experimental investigation on thermo-mechanical behavior during transient extrusion process of high-strength 7xxx aluminum alloy profile, International Journal of Advanced Manufacturing Technology. 85 (2016) 1915-1926.
DOI: 10.1007/s00170-016-8595-3
Google Scholar
[23]
X.Wang, T. Shi, Z. Jiang, W. Chen, M. Guo, J. Zhang, L. Zhuang, Y. Wang, Relationship among grain size, texture and mechanical properties of aluminums with different particle distributions, Materials Science and Engineering A. 753 (2019) 122-134.
DOI: 10.1016/j.msea.2019.03.034
Google Scholar
[24]
M. Khadyko, O.R. Myhr, O.S. Hopperstad, Work hardening and plastic anisotropy of naturally and artificially aged aluminium alloy AA6063, Mechanics of Materials. 136 (2019) paper 103069.
DOI: 10.1016/j.mechmat.2019.103069
Google Scholar
[25]
N. Bayat, T. Carlberg, Influence of Heat Treatment on the Surface Structure of 6082 Al Alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 48 (2017) 5085-5094.
DOI: 10.1007/s11661-017-4207-6
Google Scholar