Phase Transformations in the Quenched Alloy Based on Orthorhombic Titanium Aluminide during Heating

Article Preview

Abstract:

Phase transformations in the alloy based on the orthorhombic titanium aluminide (Ti-24,3Al-24,8Nb-1,4V-1,0Zr-0,6Mo-0,3Si – at. %) were studied by differential thermal analysis. The alloy was quenched from the different phase regions (β+O, β+O+α2+(Vω), β+α2, β) and was subjected to continuous heating up to . It was found that the heating temperature of the O-alloy, which determines its phase state during quenching, affects the temperature ranges, intensity, and stages of the phase transformations during subsequent heating.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

473-478

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide, Advanced engineering material. 3 (11) (2001) 851-864.

DOI: 10.1002/1527-2648(200111)3:11<851::aid-adem851>3.0.co;2-g

Google Scholar

[2] A.A. Ilyin, B.A. Kolachev, I.S. Polkin, Titanium Alloys. Composition, Structure, Properties, Reference Book, Moscow, VILS-MATI, (2009).

Google Scholar

[3] S.V. Skvortsova, А.А. Il'in, А.М. Mamonov, N.А. Nochovnaya, О.Z. Umarova, Structure and properties of semifinished sheet products made of an intermetallic refractory alloy based on Ti2AlNb, Materials Science. 51(6) (2016) 821-826.

DOI: 10.1007/s11003-016-9907-3

Google Scholar

[4] N. Nochovnaya, E. Alekseev, A. Izotova, A. Novak, Fireproof titanium alloys and peculiarities of their application, Titanium. 4 (2012) 42–46.

Google Scholar

[5] X. Jiao, B. Kong, W. Tao, G. Liu, H. Ning, Effects of annealing on microstructure and deformation uniformity of Ti-22Al-24Nb-0,5Mo laser welded joints, Materials & Desig. 130 (2017) 166-174.

DOI: 10.1016/j.matdes.2017.05.005

Google Scholar

[6] A.S. Yurovskikh, S.L. Demakov, E.V. Kolosova, Special features of the structure and phase composition of a Ti-23Al-26Nb/Al layered material obtained by plasma-spark sintering, Metal Science and Heat Treatment. 54(9-10) (2013) 466-471.

DOI: 10.1007/s11041-013-9532-9

Google Scholar

[7] D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, A new ordered orthorhombic phase in a Ti3AlNb alloy, Acta Metallurgica. 36(4) (1988) 871-882.

DOI: 10.1016/0001-6160(88)90141-1

Google Scholar

[8] Boehlert C.J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy, Journal of phase equilibria. 20(2) (1999) 101-108.

DOI: 10.1007/s11669-999-0007-z

Google Scholar

[9] N.V. Kazantseva, B.A. Greenberg, S.L. Demakov, A.A. Popov, E.P. Romanov, V.V. Rybin, Microstructure and plastic deformation of orthorhombic Ti2AlNb aluminides: I. Formation of polydomain structure, Fizika Metallov i Metallovedenie. 93(3) (2002) 83-92.

Google Scholar

[10] D. Banerjee, The intermetallic Ti2AlNb, Progress in Materials Science. 42(1-4) (1997) 135-158.

Google Scholar

[11] T.L. Trenogina, V.N. Derevyanko, V.A. Vozilkin, Effect of aluminum on the formation of metastable phases in titanium-niobium alloys, Fizika Metallov i Metallovedenie. 91(1) (2001) 108-112.

Google Scholar

[12] A.A. Popov, A.G. Illarionov, S.V. Grib, S.L. Demakov, M.S. Karabanalov, O.A. Elkina, Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide, Physics of Metals and Metallography. 106(4) (2008) 399-410.

DOI: 10.1134/s0031918x08100104

Google Scholar

[13] F.A. Sadi, C. Servant, On the B2-O phase transformation in Ti-Al-Nb alloys, Materials Science and Engineering, A. 346 (2003) 19-28.

DOI: 10.1016/s0921-5093(02)00507-5

Google Scholar

[14] A.G. Illarionov, A.A. Popov, S.V. Grib, O.A. Elkina, Special features of formation of omega-phase in titanium alloys due to hardening, Metal Science and Heat Treatment. 52(9-10) (2011) 493-498.

DOI: 10.1007/s11041-010-9306-6

Google Scholar

[15] O.G. Khadzhieva, A.G. Illarionov, A.A. Popov, Effect of aging on structure and properties of quenched alloy based on orthorhombic titanium aluminide Ti2AlNb, Physics of Metals and Metallography. 115(1) (2014) 12-20.

DOI: 10.1134/s0031918x14010098

Google Scholar

[16] A.G. Illarionov, O.G. Khadzhieva, S.M. Illarionova, E.D. Merson, Formation of the Structure and Properties upon Thermohydrogen Treatment of the Alloy Based on Titanium Aluminide Ti2AlNb, Physics of Metals and Metallography. 120(10) (2019) 969-975.

DOI: 10.1134/s0031918x19100028

Google Scholar

[17] L.A. Bendersky, A. Roytburd, W.J. Boettiger, Phase transformation in the (Ti,Al)3Nb section of Ti-Al-Nb-system – I. Microstructural predictions based on subgroup relation between phases, Acta metal. Mater. 42(7) (1994) 2323-2335.

DOI: 10.1016/0956-7151(94)90311-5

Google Scholar

[18] L.A. Bendersky, W.J. Boettiger, Phase transformation in the (Ti,Al)3Nb section of Ti-Al-Nb-system – II. Experimental TEM study of microstructures, Acta metal. Mater. 42(7) (1994) 2337-2352.

DOI: 10.1016/0956-7151(94)90312-3

Google Scholar

[19] O.G. Khadzhieva, A.G. Illarionov, A.A. Popov, S.V. Grib, Effect of hydrogen on the structure of quenched orthorhombic titanium aluminide-based alloy and phase transformations during subsequent heating, Physics of Metals and Metallography. 114(6) (2013) 529-534.

DOI: 10.1134/s0031918x13060070

Google Scholar

[20] M.A. Shtremel, Strength of Alloys, Ch. 1. Lattice Defects, MISiS, Moscow, (1999).

Google Scholar

[21] A.A. Popov, Phase transformation and heat treatment of titanium (α+β) alloys, Metal Science and Heat Treatment. 37(10) (1995) 409-412.

DOI: 10.1007/bf01156571

Google Scholar