[1]
D. M. Turley, Factors affecting surface finishing when grinding titanium and titanium alloy (Ti-6Al-4V), Wear. 104 (1985) 323-335.
DOI: 10.1016/0043-1648(85)90040-7
Google Scholar
[2]
Guo Guoqiang, Liu Zhiqiang, An Qinglong, Chen Ming, Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive, International Journal Advanced Manufacture Technologies. 57 (2011) 135-142.
DOI: 10.1007/s00170-011-3272-z
Google Scholar
[3]
Masafumi Kikuchia, Yukyo Takadaa, Seigo Kiyosueb, etc., Grindbility of cast Ti-Cu alloys, Dental materials. 19 (2003) 375-381.
Google Scholar
[4]
Manish Mukhopadhyay, Pranab Kumar Kundu, Souvik Chatterjee, Santanu Das, Impact of dressing infeed on SiC wheel for grinding Ti-6Al-4V, Materials and Manufacturing Processes. 34 (2019) 54-60.
DOI: 10.1080/10426914.2018.1532588
Google Scholar
[5]
Xu Xipeng, Yu Yiqing, Hui Hyang, Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys, Wear. 255 (2003) 1421-1426.
DOI: 10.1016/s0043-1648(03)00163-7
Google Scholar
[6]
G. I. Sayutin, V. A. Nosenko, Study of Microchemical Changes in Titanium Alloy Surfaces during Grinding. Trenie i Iznos, 4 (1983) 348-352.
Google Scholar
[7]
G. I. Sayutin, V. A. Nosenko, N. F. Larionov, Transfer of Silicon to the Metal Surface during Grinding by Wheels and Microscratching by Indentors Made out of Silicon Carbide, Trenie i Iznos. 5 (1984), 513-519.
Google Scholar
[8]
V. A. Nosenko, Interaction intensity criterion for machined and abrasive materials in grinding (2001) Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2001) 85-91.
Google Scholar
[9]
S. V. Nosenko, V. A. Nosenko, L. L. Kremenetskii, The Condition of Machined Surface of Titanium Alloy in Dry Grinding, Procedia Engineering. 206 (2017) 115-120.
DOI: 10.1016/j.proeng.2017.10.446
Google Scholar
[10]
G. I. Sayutin, V. A. Nosenko, Grinding parts from titanium-based alloys, Engineering, Moscow, (1987).
Google Scholar
[11]
V. A. Nosenko, Shlifovaniye adgezionno aktivnykh metallov, Moscow, (2000).
Google Scholar
[12]
G. V. Samsonov, I. F. Pryadko, L. F. Pryadko, Elektronnaya lokalizatsiya v tverdom tele, Nauka, Moscow, (1976).
Google Scholar
[13]
V.A. Nosenko, Contact interaction effect on abrasive tool wear in grinding, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 1 (2005) 73-77.
Google Scholar
[14]
V. A. Nosenko, Improvement of abrasive tools on vinyl resin binder, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 3 (2004) 85-90.
Google Scholar
[15]
V. A. Nosenko, On contact interaction intensity of d-transition metals with silicon carbide in grinding, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2002) 78-84.
Google Scholar
[16]
V. A. Nosenko, N. F. Larionov, N. I. Egorov, M. P. Volkov, Testing of abrasive wheels and coolants while deep grinding of titanium alloys, Soviet engineering research. 9 (1989) 69-71.
Google Scholar
[17]
Xi Xinxin, Yu Tianyu, Ding Wenfeng, Xu Jiuhua, Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels: tool surface topology effect on grinding force and ground surface quality, Precision Engineering. 53 (2018) 134-145.
DOI: 10.1016/j.precisioneng.2018.03.007
Google Scholar
[18]
Manish Mukhopadhyay, Pranab Kumar Kundu, Enhancing grindability of Ti–6Al–4V applying ecological fluids under SQL using SiC wheel, SN Applied Science. 1 (2019) 600.
DOI: 10.1007/s42452-019-0616-z
Google Scholar
[19]
S. A. Bentley, N. P. Goh, D. K. Aspinwall, Reciprocating surface grinding of a gamma titanium aluminide intermetallic alloy, Journal of Materials Processing Technology. 118 (2001) 22-28.
DOI: 10.1016/s0924-0136(01)01033-0
Google Scholar
[20]
S. V. Nosenko, V. A. Nosenko, L. L. Kremenetskii, Influence of dressing of the wheel on the surface quality of titanium alloy in deep grinding, Russian Engineering Research. 34 (2014) 632-636.
DOI: 10.3103/s1068798x14100128
Google Scholar
[21]
S. V. Nosenko, V. A. Nosenko, L. L. Kremenetskii, Concentration gradients in the surface layer of titanium alloy ground by a silicon-carbide wheel, Russian Engineering Research 36 (2016) 43-45.
DOI: 10.3103/s1068798x16010160
Google Scholar
[22]
S. V. Nosenko, V. A. Nosenko, A. A. Koryazhkin, The effect of the operating speed and wheel characteristics on the surface quality at creep-feed grinding titanium alloys, Solid State Phenomena. 284 (2018) 369-374.
DOI: 10.4028/www.scientific.net/ssp.284.369
Google Scholar
[23]
S. V. Nosenko, V. A. Nosenko, A. A. Krutikova, L. L. Kremenetskii, Surface-layer composition of titanium alloy after dry grinding by a silicon-carbide wheel, Russian Engineering Research. 35 (2015) 554-557.
DOI: 10.3103/s1068798x15070163
Google Scholar
[24]
Z. I. Kremen, V. G. Yuriev, A. F. Baboshkin, Grinding technology in mechanical engineering, Polytechnic, Saint-Petersburg, (2007).
Google Scholar
[25]
Kanaya K., Okayama S, Penetraion and Energy Loss Theory of Electrons in Solid Targets. J. Phys. D. 5 (1972) 43–58.
Google Scholar
[26]
A. P. Garshin, S. M. Fedotova, Abrazivnyye materialy i instrumenty. Tekhnologiya proizvodstva, Politekhnicheskiy universitet, Saint-Petersburg, (2008).
Google Scholar