[1]
O.S. Kashapov, A.V. Novak, N.A. Nochovnaya, T.V. Pavlova, Sostoyanie, problemy i perspektivy sozdaniya zharoprochnykh titanovykh splavov dlya detalej GTD, Trudy VIAM. 3 (2013) 2-16.
Google Scholar
[2]
X. Liang, Z. Liu, B. Wang, State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review Measurement 132 (2019) 150-181.
DOI: 10.1016/j.measurement.2018.09.045
Google Scholar
[3]
V.A. Poletaev, E.V. Tsvetkov, Kachestvo poverxnostnogo sloya lopatok kompressorov iz titana pri mnogokoordinatnom glubinnom shlifovanii. Naukoemkie texnologii v mashinostroenii. 78 (2017) 15-19.
Google Scholar
[4]
Z. Tao, Y. Shi, L.Sampsa, J. Zhou, Investigation of the Effect of Grinding Parameters on Surface Quality in Grinding of TC4 Titanium Alloy, Procedia Manufacturing 11 (2017) 2131-2138.
DOI: 10.1016/j.promfg.2017.07.344
Google Scholar
[5]
L. Zhirong, A. H. Ali, L. Haonan, Y. Yue, D. Oriol, A. Dragos, State-of-the-art of surface integrity in machining of metal matrix composites. International Journal of Machine Tools and Manufacture 143 (2019) 63-91.
DOI: 10.1016/j.ijmachtools.2019.05.006
Google Scholar
[6]
G.I. Sayutin, V.A. Nosenko, Shlifovanie detaley iz splavov na osnove titana. M.: Mashinostroenie, (1987).
Google Scholar
[7]
Z. Biao, D. Wenfeng, Z. Yi, S. Honghua, X. Jiuhua, Effect of grain wear on material removal behaviour during grinding of Ti-6Al-4V titanium alloy with single aggregated cBN grain. Ceramics International 45 (2019) 14842-14850.
DOI: 10.1016/j.ceramint.2019.04.215
Google Scholar
[8]
V.A. Nosenko, A.V. Fetisov, V.Y. Puzyrkova, Morphology and chemical composition of silicon carbide surfaces interacting with iron, cobalt, and nickel in microscratching. Solid State Phenomena 284 (2018) 363-368.
DOI: 10.4028/www.scientific.net/ssp.284.363
Google Scholar
[9]
X. Xinxin, Y. Tianyu, D. Wenfeng, X. Jiuhua, Grinding of Ti 2 AlNb intermetallics using silicon carbide and alumina abrasive wheels: Tool surface topology effect on grinding force and ground surface quality. Precision Engineering 53 (2018) 134-145.
DOI: 10.1016/j.precisioneng.2018.03.007
Google Scholar
[10]
G.I. Sayutin, V.A. Nosenko, Study of Microchemical Changes in Titanium Alloy Surfaces during Grinding. Issledovanie mikrokhimicheskikh izmenenii poverkhnosti titanovykh splavov pri shlifovanii.] Trenie i Iznos. 4 (1983) 348-352.
Google Scholar
[11]
G.I. Sayutin, V.A. Nosenko, N.F. Larionov, Transfer of Silicon to the Metal Surface during Grinding by Wheels and Microscratching by Indentors Made out of Silicon Carbide. Perenos kremniya na poverkhnost' metallapri shlifovanii krugami i mikrotsarapanii indentorami iz karbida kremniya. Trenie i Iznos. 5 (1984) 513-519.
Google Scholar
[12]
V.A. Nosenko, Interaction intensity criterion for machined and abrasive materials in grinding. Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2001) 85-91.
Google Scholar
[13]
V.A. Nosenko, On contact interaction intensity of d-transition metals with silicon carbide in grinding. Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2002) 78-84.
Google Scholar
[14]
V.A. Nosenko, Contact interaction effect on abrasive tool wear in grinding. Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 1 (2005) 73-77.
Google Scholar
[15]
D. Wenfeng, Z. Biao, X. Jiuhua, Y. Changyong, Y. Fu, S. Honghua. Grinding behavior and surface appearance of (TiCp+TiBw)/Ti-6Al-4V titanium matrix composites. Chinese Journal of Aeronautics. 27 (2014) 1334-1342.
DOI: 10.1016/j.cja.2014.08.006
Google Scholar
[16]
M. AntonioVitor, D. S. Rosemar, M. Alisson, G. Rogério, D. Anselmo, O. Rodolfo, Surface Grinding of Ti-6Al-4V Alloy with SiC Abrasive Wheel at Various Cutting Conditions. Procedia Manufacturing 10 (2017) 590-600.
DOI: 10.1016/j.promfg.2017.07.057
Google Scholar
[17]
Evaluation of surface integrity following point grinding of advanced titanium and nickel based alloys. Procedia CIRP 45 (2016) 47-50.
DOI: 10.1016/j.procir.2016.02.343
Google Scholar
[18]
X. Xipeng, Y. Yiqing, H. Hui, Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear. 255 (2003) 1421-1426.
DOI: 10.1016/s0043-1648(03)00163-7
Google Scholar
[19]
L. Chaojie, D. Wenfeng, Y. Tianyu, Y. Changyong, Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precision Engineering 51. (2018) 68-77.
DOI: 10.1016/j.precisioneng.2017.07.012
Google Scholar
[20]
A.P. Garshin, S.M. Fedotova, Abrazivnye materialy i instrumenty. Texnologiya proizvodstva. Pod red. A.P. Garshina. SPb. Politexnicheskiy universitet (2008) 1010.
Google Scholar