Transfer of Abrasive Material at Grinding a Titanium Alloy with a Wheel of Cubic Boron Nitride

Article Preview

Abstract:

The article summarizes the results of the of the titanium alloy surface morphology and chemical composition study after grinding with a wheel of cubic boron nitride on a ceramic bond. The titanium alloy was treated using the method of cut-in grinding in the finishing mode using a synthetic water-soluble lubricant-cooling liquid that does not contain mineral oil. The research was carried out using the FEI Versa 3D LoVac electron microscope. Digital photos of the titanium alloy surface at different magnifications are given. Individual objects’ morphology allows us to identify them as wear products of abrasive tools. The chemical composition of the selected objects was studied by local x-ray spectral analysis. CBN crystals are partially or completely pressed into the treated surface and covered with a layer of the treated material. On the surface of CBN crystals, there are chemical elements that are part of the abrasive tool bond.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

521-526

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.S. Kashapov, A.V. Novak, N.A. Nochovnaya, T.V. Pavlova, Sostoyanie, problemy i perspektivy sozdaniya zharoprochnykh titanovykh splavov dlya detalej GTD, Trudy VIAM. 3 (2013) 2-16.

Google Scholar

[2] X. Liang, Z. Liu, B. Wang, State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review Measurement 132 (2019) 150-181.

DOI: 10.1016/j.measurement.2018.09.045

Google Scholar

[3] V.A. Poletaev, E.V. Tsvetkov, Kachestvo poverxnostnogo sloya lopatok kompressorov iz titana pri mnogokoordinatnom glubinnom shlifovanii. Naukoemkie texnologii v mashinostroenii. 78 (2017) 15-19.

Google Scholar

[4] Z. Tao, Y. Shi, L.Sampsa, J. Zhou, Investigation of the Effect of Grinding Parameters on Surface Quality in Grinding of TC4 Titanium Alloy, Procedia Manufacturing 11 (2017) 2131-2138.

DOI: 10.1016/j.promfg.2017.07.344

Google Scholar

[5] L. Zhirong, A. H. Ali, L. Haonan, Y. Yue, D. Oriol, A. Dragos, State-of-the-art of surface integrity in machining of metal matrix composites. International Journal of Machine Tools and Manufacture 143 (2019) 63-91.

DOI: 10.1016/j.ijmachtools.2019.05.006

Google Scholar

[6] G.I. Sayutin, V.A. Nosenko, Shlifovanie detaley iz splavov na osnove titana. M.: Mashinostroenie, (1987).

Google Scholar

[7] Z. Biao, D. Wenfeng, Z. Yi, S. Honghua, X. Jiuhua, Effect of grain wear on material removal behaviour during grinding of Ti-6Al-4V titanium alloy with single aggregated cBN grain. Ceramics International 45 (2019) 14842-14850.

DOI: 10.1016/j.ceramint.2019.04.215

Google Scholar

[8] V.A. Nosenko, A.V. Fetisov, V.Y. Puzyrkova, Morphology and chemical composition of silicon carbide surfaces interacting with iron, cobalt, and nickel in microscratching. Solid State Phenomena 284 (2018) 363-368.

DOI: 10.4028/www.scientific.net/ssp.284.363

Google Scholar

[9] X. Xinxin, Y. Tianyu, D. Wenfeng, X. Jiuhua, Grinding of Ti 2 AlNb intermetallics using silicon carbide and alumina abrasive wheels: Tool surface topology effect on grinding force and ground surface quality. Precision Engineering 53 (2018) 134-145.

DOI: 10.1016/j.precisioneng.2018.03.007

Google Scholar

[10] G.I. Sayutin, V.A. Nosenko, Study of Microchemical Changes in Titanium Alloy Surfaces during Grinding. Issledovanie mikrokhimicheskikh izmenenii poverkhnosti titanovykh splavov pri shlifovanii.] Trenie i Iznos. 4 (1983) 348-352.

Google Scholar

[11] G.I. Sayutin, V.A. Nosenko, N.F. Larionov, Transfer of Silicon to the Metal Surface during Grinding by Wheels and Microscratching by Indentors Made out of Silicon Carbide. Perenos kremniya na poverkhnost' metallapri shlifovanii krugami i mikrotsarapanii indentorami iz karbida kremniya. Trenie i Iznos. 5 (1984) 513-519.

Google Scholar

[12] V.A. Nosenko, Interaction intensity criterion for machined and abrasive materials in grinding. Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2001) 85-91.

Google Scholar

[13] V.A. Nosenko, On contact interaction intensity of d-transition metals with silicon carbide in grinding. Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2002) 78-84.

Google Scholar

[14] V.A. Nosenko, Contact interaction effect on abrasive tool wear in grinding. Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 1 (2005) 73-77.

Google Scholar

[15] D. Wenfeng, Z. Biao, X. Jiuhua, Y. Changyong, Y. Fu, S. Honghua. Grinding behavior and surface appearance of (TiCp+TiBw)/Ti-6Al-4V titanium matrix composites. Chinese Journal of Aeronautics. 27 (2014) 1334-1342.

DOI: 10.1016/j.cja.2014.08.006

Google Scholar

[16] M. AntonioVitor, D. S. Rosemar, M. Alisson, G. Rogério, D. Anselmo, O. Rodolfo, Surface Grinding of Ti-6Al-4V Alloy with SiC Abrasive Wheel at Various Cutting Conditions. Procedia Manufacturing 10 (2017) 590-600.

DOI: 10.1016/j.promfg.2017.07.057

Google Scholar

[17] Evaluation of surface integrity following point grinding of advanced titanium and nickel based alloys. Procedia CIRP 45 (2016) 47-50.

DOI: 10.1016/j.procir.2016.02.343

Google Scholar

[18] X. Xipeng, Y. Yiqing, H. Hui, Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear. 255 (2003) 1421-1426.

DOI: 10.1016/s0043-1648(03)00163-7

Google Scholar

[19] L. Chaojie, D. Wenfeng, Y. Tianyu, Y. Changyong, Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precision Engineering 51. (2018) 68-77.

DOI: 10.1016/j.precisioneng.2017.07.012

Google Scholar

[20] A.P. Garshin, S.M. Fedotova, Abrazivnye materialy i instrumenty. Texnologiya proizvodstva. Pod red. A.P. Garshina. SPb. Politexnicheskiy universitet (2008) 1010.

Google Scholar