[1]
G. Mirone, A new model for the elastoplastic characterization and the stress strain determination on the necking section of a tensile specimen, Int. J. Solids Struct. 41 (2004) 3545-3564.
DOI: 10.1016/j.ijsolstr.2004.02.011
Google Scholar
[2]
G. Rosa, G. Mirone, A. Risitano, Postnecking elastoplastic characterization: degree of approximation in the Bridgman method and properties of the flow-stress/true-stress ratio, Metall. Mater. Trans. A. 34A (2003) 615-624.
DOI: 10.1007/s11661-003-0096-y
Google Scholar
[3]
J. Kim, A. Serpantie, F. Barlat, F. Pierron, M. Lee, Characterization of the post-necking strain hardening behavior using the virtual fields method, Int. J. Solids Struct. 50-24 (2014) 3829-3842.
DOI: 10.1016/j.ijsolstr.2013.07.018
Google Scholar
[4]
J. Kajberg, G. Lindkvist, Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields, Int. J. Solids Struct. 41 (2004) 3439-3459.
DOI: 10.1016/j.ijsolstr.2004.02.021
Google Scholar
[5]
P. Koc, B. Stok, Computer-aided identification of the yield curve of a sheet metal after onset of necking, Comput. Mater. Sci 31 (2004) 155-168.
DOI: 10.1016/j.commatsci.2004.02.004
Google Scholar
[6]
P. W. Bridgman, Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure, Harvard University Press, New York-London, (1952).
DOI: 10.1126/science.115.2990.424
Google Scholar
[7]
D. Gerbig, A. Bower, V. Savic, L.G. Hector, Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens, Int. J. Solids Struct. 97-98 (2016) 496-509.
DOI: 10.1016/j.ijsolstr.2016.06.038
Google Scholar
[8]
A. Vaz-Romero, Y. Rotbaum, J. Rodriguez-Martinez, D. Rittel, Necking evolution in dynamically stretched bars: new experimental and computational insights, J. Mech. Phys. Solids. 91 (2016) 216-239.
DOI: 10.1016/j.jmps.2016.02.024
Google Scholar
[9]
C. G'Sell, J. Hiver, A. Dahoun, A. Souahi, Video-controlled tensile testing of polymers and metals beyond the necking point, J. Mater. Sci. 27-18 (1992) 5031-5039.
DOI: 10.1007/bf01105270
Google Scholar
[10]
H. Zhang, K. Ravi-Chandar, On the dynamics of necking and fragmentation. Real-time and post-mortem observations in Al 6061-O. 142 (2006).
DOI: 10.1007/s10704-006-9024-7
Google Scholar
[11]
V.E. Wildeman, E.V. Lomakin, T.V. Tretyakova, M.P. Tretyakov, Patterns of development of inhomogeneous fields during supercritical deformation of steel samples under tension, Solid Mechanics. 5 (2016) 132-139. (in Russian).
Google Scholar
[12]
E.Yu. Lubkova, E.M. Morozov, A.V. Osintsev, A.S. Plotnikov, To the question of the place of neck formation under tension of cylindrical specimens, Letters on Materials. 7-3 (2017) 260-265. (in Russian).
DOI: 10.22226/2410-3535-2017-3-260-265
Google Scholar
[13]
A. Sancho, M.J. Cox, T. Cartwright, C.M. Davies, P.A. Hooper, J.P. Dear, An experimental methodology to characterize post-necking behavior and quantify ductile damage accumulation in isotropic materials, Int. J. of Solids and Struct. 176-177 (2019) 191-206.
DOI: 10.1016/j.ijsolstr.2019.06.010
Google Scholar
[14]
N.N. Davidenkov, N.N. Spiridonova, Analysis of the stress state in the neck of a stretched sample, Factory Laboratory. 6 (1945) 583-593. (in Russian).
Google Scholar
[15]
A.A. Ostsemin, On the analysis of the stress state in an elliptical neck of a specimen under tension, Problems of Strength. 4 (2009) 19-28. (in Russian).
Google Scholar
[16]
A.A. Ostsemin, The small parameter method in plane problems of the theory of ideal plasticity under tension of samples with notches, Factory Laboratory. 5 (1999) 37-70. (in Russian).
Google Scholar
[17]
W. Ramberg, W. Osgood, Description of Stress-Strain Curves by Three Parameters, Technical Report. NASA Science and Technical Information Facility. Technical Note No.902 (1943).
Google Scholar
[18]
G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21-1 (1985) 31-48.
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[19]
H. Mecking, U. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29-11 (1981) 1865-1875.
DOI: 10.1016/0001-6160(81)90112-7
Google Scholar
[20]
I.L. Perlin, Yu.P. Glebov, M.Z. Yermanok, The effect of temperature, degree and strain rate on the resistance to deformation of aluminum alloys, Non-ferrous metals. 2 (1964) 62-65. (in Russian).
Google Scholar
[21]
M.Z. Yermanok, Yu.P. Sobolev, A.A. Gelman, Pressing titanium alloys, Metallurgy, Moscow, 1979. (in Russian).
Google Scholar
[22]
E.V. Vorobiev, Peculiarities of necking with low-temperature discontinuous fluidity of metals. Message 1. Axisymmetric deformation, Strength problems. 3 (2008) 92-99. (in Russian).
Google Scholar
[23]
P.I. Polukhin, G.Ya. Gun, A.M. Galkin, Resistance to plastic deformation of metals and alloys. Directory, Metallurgy, Moscow, 1976. (in Russian).
Google Scholar