Preliminary Study on the Effect of Sulphuric Acid to Nitric Acid Mixture Composition, Temperature and Time on Nitrocellulose Synthesis Based Nata de Coco

Article Preview

Abstract:

Nitrogen content is a paramount significance in predicting nitrocellulose. Nitrocellulose with high nitrogen content (>12.5%) can be used for propellant, while low nitrogen content (<12.5%) can be applied for the production of ink, paint and leather finishes. In this preliminary study, the effect of mole ratio of sulphuric acid to nitric acid, reaction temperature and time towards nitrogen content in nitrocellulose was investigated. Nitrocellulose was synthesized using nata de coco as bacterial cellulose source via nitration method. Nitrocellulose with percentage of nitrogen content of 11.74% to 12.75% was obtained when 2 to 4 mole ratio of sulphuric to nitric acid was used with operating temperature and time ranging 20°C to 40°C and 20 minutes to 40 minutes respectively. Analysis of Fourier transform infrared (FTIR) displayed the reduction of hydroxyl group in nitrocellulose proving that several hydroxyl group in cellulose was successfully replaced by nitryl group. Other characterizations such as elemental analyser, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were evaluated to support the result.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

312-319

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Blanco, M.C. Monte, C. Campano, A. Balea, N. Merayo, C. Negro, Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC) and Bacterial Cellulose (BC), in: C.M. Hussain (Eds.), Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018, pp.74-126.

DOI: 10.1016/b978-0-12-813351-4.00005-5

Google Scholar

[2] M.N.F. Norrrahim, H. Ariffin, T.A.T. Yasim-Anuar, F. Ghaemi, M.A. Hassan, N.A. Ibrahim, J.L.H. Ngee, W.M.Z.W. Yunus, Superheated steam pretreatment of cellulose affects its electrospinnability for microfibrillated cellulose production, Cellulose 25(7) (2018) 3853–3859.

DOI: 10.1007/s10570-018-1859-3

Google Scholar

[3] D. Sun, B. Ma, C. Zhu, C.-S. Liu, J.-Z. Yang, Novel Nitrocellulose Made from Bacterial Cellulose, Journal of Energetic Materials 28(2) (2010) 85–97.

DOI: 10.1080/07370650903222551

Google Scholar

[4] M.M. Mahmud, A. Perveen, R.A. Jahan, M.A. Matin, S.Y. Wong, X. Li, M.T. Arafat, Preparation of different polymorphs of cellulose from different acid hydrolysis medium, International Journal of Biological Macromolecules 130 (2019) 969–976.

DOI: 10.1016/j.ijbiomac.2019.03.027

Google Scholar

[5] H. Grau, A.Y. Fadeev, Raincoat for explosives,: Surface chemistry approach to control wetting of nitrocellulose with nitroglycerin, Journal of Colloid and Interface Science 547 (2019) 145–152.

DOI: 10.1016/j.jcis.2019.03.063

Google Scholar

[6] K. Jedvert, T. Heinze, Cellulose modification and shaping – a review, Journal of Polymer Engineering 37(9) (2017) 1-16.

Google Scholar

[7] Y.A. Gismatulina, V.V. Budaeva, G.V. Sakovich, Nitrocellulose Synthesis from Miscanthus Cellulose, Propellant, Explosives, Pyrotechnics 42 (2017) 1–6.

DOI: 10.1002/prep.201700210

Google Scholar

[8] M.A Fernandez de la Ossa, M. Torre, C. Garcia-Ruiz, Nitrocellulose in propellants: characteristics and thermal properties in: M.C. Wythers (Eds.), Advances in Materials Science Research, Nova Science Publishers Inc., 2012, pp.201-220.

Google Scholar

[9] C. Selwitz, Cellulose Nitrate in Conservation, The getty conversation institute (1988).

Google Scholar

[10] C.W. Saunders, L.T. Taylor, A review of the synthesis, chemistry and analysis of nitrocellulose, Journal of Energetic Materials 8(3) (1990) 149-203.

Google Scholar

[11] M. Moniruzzaman, J.M. Bellerby, N. Mai, The effect of light on the viscosity and molecular mass of nitrocellulose, Polymer Degradation and Stability 96(5) (2011) 929–935.

DOI: 10.1016/j.polymdegradstab.2011.01.026

Google Scholar

[12] H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata, and M. Takai, CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives . 1 . Complete Assignment of the CP/MAS 13 C NMR Spectrum of the Native Cellulose, Journal American Chemical Society 124 (2002) 7506–7511.

DOI: 10.1021/ja010704o

Google Scholar

[13] S.H. Jamal, N. J. Roslan, N.A.A. Shah, S.A.M. Noor, K.K. Ong, W.M.Z.W. Yunus, Preparation and characterization of nitrocellulose from bacterial cellulose for propellant uses, Material Today: Proceedings (In press) (2020).

DOI: 10.1016/j.matpr.2020.05.540

Google Scholar

[14] S. Ma, G. Song, N. Feng, Preparation and characterization of self-emulsified waterborne nitrocellulose, Carbohydrate Polymers 89(1) (2012) 36–40.

DOI: 10.1016/j.carbpol.2012.02.029

Google Scholar

[15] M.N. Costa, B. Veigas, J.M. Jacob, D.S. Santos, J. Gomes, P.V. Baptista, R. Martins, J. Inácio, E. Fortunato, A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper, Nanotechnology. 25 (2014) 094006.

DOI: 10.1088/0957-4484/25/9/094006

Google Scholar

[16] D. Trache, K. Khimeche, A. Mezroua, M. Benziane, Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability, Journal of Thermal Analysis and Calorimetry 124 (2016) 1485-1496.

DOI: 10.1007/s10973-016-5293-1

Google Scholar