Purification on Kappa Carrageenan by Re-Precipitation Technique

Article Preview

Abstract:

Purification on kappa (ƙ) carrageenan was performed by dissolving ƙ-carrageenan powder in distilled water and re-precipitated with ethanol and n-hexane separately during re-precipitation process. The purified kappa carrageenan was analyzed by using Fourier transform infrared (FTIR) spectroscopy and carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis. The outcomes from FTIR showed there are physical changes due to intermolecular interactions which lead to decrease and lower intensity of hydroxyl band at 3345 cm-1 after re-precipitated with n-hexane, compared to re-precipitation with ethanol and unpurified ƙ-carrageenan. There were variations observed in the percentages of C, H and S in the CHNS analysis between unpurified and purified ƙ-carrageenan. The successfully purified ƙ-carrageenan are suitable to be used for further application.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

327-332

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mustapha, H. Chandar, Z.Z. Abidin, R. Saghravani, M.Y. Harun, Production of semi-refined carrageenan from Eucheuma cotonii, Journal of Scientific & Industrial Research 70 (2011) 865-870.

Google Scholar

[2] J. Necas, L. Bartosikova, Carrageenan: a review, Veterinarni medicina 58(4) (2013) 187-205.

Google Scholar

[3] T. Karbowiak, H. Hervet, L. Léger, D. Champion, F. Debeaufort, A. Voilley, Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application, Biomacromolecules 7(6) (2006) 2011-2019.

DOI: 10.1021/bm060179r

Google Scholar

[4] J. Liu, X. Zhan, J. Wan, Y. Wang, C. Wang, Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects, Carbohydrate polymers 121 (2015) 27-36.

DOI: 10.1016/j.carbpol.2014.11.063

Google Scholar

[5] S.M. Mihaila, A.K. Gaharwar, R.L. Reis, A.P. Marques, M.E. Gomes, A. Khademhosseini, Photocrosslinkable kappa‐carrageenan hydrogels for tissue engineering applications, Advanced healthcare materials 2(6) (2013) 895-907.

DOI: 10.1002/adhm.201200317

Google Scholar

[6] E.G. Popa, M.E. Gomes, R.L. Reis, Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications, Biomacromolecules 12(11) (2011) 3952-3961.

DOI: 10.1021/bm200965x

Google Scholar

[7] A. Akesowan, Effect of combined stabilizers containing Konjac flour and κ-carrageenan on ice cream, AU J.T. 12(2) (2008) 81-85.

Google Scholar

[8] K. Prasad, Y. Kaneko, J.I. Kadokawa, Novel gelling systems of κ‐, ι‐and λ‐carrageenans and their composite gels with cellulose using ionic liquid, Macromolecular bioscience 9(4) (2009) 376-382.

DOI: 10.1002/mabi.200800179

Google Scholar

[9] L. Du, Y. Lu, L. Geonzon, J. Xie, S. Matsukawa, Rheological properties and interactions between polysaccharides in mixed carrageenan solutions, Journal of Biorheology 30(1) (2016) 13-18.

DOI: 10.17106/jbr.30.13

Google Scholar

[10] S. Kodama, J. Kuwabara, X. Jiang, I. Fukushima, T. Kanbara, Effect of Purification Solvent on Polymer Impurities and Device Performance, ACS Applied Polymer Materials 1(8) (2019) 2083-2088.

DOI: 10.1021/acsapm.9b00385

Google Scholar

[11] J. Jorda, P. Marechal, L. Rigal, P.Y. Pontalier, Biopolymer purification by ultrafiltration, Desalination 148(1-3) (2002) 187-191.

DOI: 10.1016/s0011-9164(02)00696-3

Google Scholar

[12] T.N.T.V. Bui, Structure, Rheological Properties and Connectivity of Gels Formed by Carrageenan Extracted from Different Red Algae Species, Doctoral dissertation, Universite du Maine, (2019).

Google Scholar

[13] N.A.A. Ghani, R. Othaman, A. Ahmad, F.H. Anuar, N.H. Hassan, Impact of purification on iota carrageenan as solid polymer electrolyte, Arabian journal of chemistry 12(3) (2019) 370-376.

DOI: 10.1016/j.arabjc.2018.06.008

Google Scholar

[14] V.L. Campo, D.F. Kawano, D.B. da Silva Jr, I. Carvalho, Carrageenans: Biological properties, chemical modifications and structural analysis–A review, Carbohydrate polymers 77(2) (2009) 167-180.

DOI: 10.1016/j.carbpol.2009.01.020

Google Scholar

[15] P. Volery, R. Besson, C. Schaffer-Lequart, Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection, Journal of agricultural and food chemistry 52(25) (2004) 7457-7463.

DOI: 10.1021/jf040229o

Google Scholar

[16] I.J. Shamsudin, A. Ahmad, N.H. Hassan, H. Kaddami, Biopolymer electrolytes based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid, Ionics 22(6) (2016) 841-851.

DOI: 10.1007/s11581-015-1598-5

Google Scholar

[17] G. Rytwo, R. Zakai, B. Wicklein, The use of ATR-FTIR spectroscopy for quantification of adsorbed compounds, Journal of Spectroscopy 2015 (2015) 1-8.

DOI: 10.1155/2015/727595

Google Scholar

[18] D.S. Achilias, A. Giannoulis, G.Z. Papageorgiou, Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique, Polymer Bulletin 63(3) (2009) 449-465.

DOI: 10.1007/s00289-009-0104-5

Google Scholar

[19] I.U.M. Roldán, A.T. Mitsuhara, J.P.M. Desajacomo, L.E. de Oliveira, V.C. Gelli, R. Monti, F. Masarin, Chemical, structural, and ultrastructural analysis of waste from the carrageenan and sugar-bioethanol processes for future bioenergy generation, Biomass and Bioenergy 107(2017) 233-243.

DOI: 10.1016/j.biombioe.2017.10.008

Google Scholar