Thermomechanical, Crystallization and Melting Behavior of Plasticized Poly(Lactic Acid) Nanocomposites

Article Preview

Abstract:

The incorporation of filler and plasticizer provides effective nucleation and mechanical reinforcement in polymer composites to impart flexibility, toughness, thermal stability and tensile strength of PLA composites that can be used in the development of packaging applications. In this paper, the inclusion of plasticizer and reinforcement of nanofiller in PLA matrix prepared using solvent casting method aims to improve the thermomechanical properties that consequently alter the crystallization and melting behavior of PLA composites. Plasticized PLA with different percentages of TiO2 at 2.0, 3.5, 5.0 and 7.0 % w/w were dispersed in PLA solution using mechanical mixer and ultrasonication technique to introduce a matrix reinforcing nanophase within the composite. The thermomechanical properties and thermal behavior of PLA nanocomposites were characterized using dynamic mechanical analysis (DMA) and differential scanning calorimeter (DSC). DSC cooling curves at low scanning rate of 2.0 K·min-1 proved that the presence of TBC in PLA matrix increased the crystallinity of plasticized PLA nanocomposites that initiated the formation of perfect spherulites. TBC increased the crystallization activity during cooling, which in turn reduced the recrystallization effect on heating, in parallel with DMA results that revealed small peak of cold-crystallization activity on PLA nanocomposites with the addition of plasticizer observed at temperature range of 80 °C to 100 °C. Nanofiller induced nucleation for crystallization of PLA matrix and plasticizer accelerated the overall crystallization process. Considerable adjustments of plasticizer and nanofiller in PLA matrix in having a good balance of stiffness and flexibility are a practical strategy that has a potential in biopolymer medical engineering and in the development of packaging applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

351-360

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Arjmandi, A. Hassan, M.M. Haafiz, Z.Zakaria, I.M. Inuwa, Characterization of polylactic acid/microcrystalline cellulose/montmorillonite hybrid composites, Malays J. Anal Sci. 18 (2014) 642-650.

DOI: 10.1016/b978-0-08-100957-4.00002-4

Google Scholar

[2] V. Kumar, L. Tyagi, S. Sinha, Wood flour–reinforced plastic composites: a review, Rev. Chem. Eng. 27(5-6) (2011) 253-264.

Google Scholar

[3] B. Kuswandi, Environmentally friendly food nano-packaging, Environ. Chem. Lett. 15(2) (2017) 205-221.

DOI: 10.1007/s10311-017-0613-7

Google Scholar

[4] V. Siracusa, P. Rocculi, S. Romani, M. Dalla Rosa, Biodegradable polymers for food packaging: a review, Trends Food Sci. Tech. 19(12) (2008) 634-643.

DOI: 10.1016/j.tifs.2008.07.003

Google Scholar

[5] V. Nagarajan, A.K. Mohanty, M. Misra, Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance, ACS Sustain. Chem. Eng. 4 (2016) 2899−2916.

DOI: 10.1021/acssuschemeng.6b00321

Google Scholar

[6] L. Chen, Q. Dou, Influence of the combination of nucleating agent and plasticizer on the non-isothermal crystallization kinetics and activation energies of poly (lactic acid), J. Therm. Anal. Calorim. (2019) 1-22.

DOI: 10.1007/s10973-019-08507-y

Google Scholar

[7] K.M. Nampoothiri, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol. 101(22) (2010) 8493-8501.

DOI: 10.1016/j.biortech.2010.05.092

Google Scholar

[8] Y.Y. Yee, Y.C. Ching, S. Rozali, N.A. Hashim, R. Singh, Preparation and characterization of poly (lactic acid)-based composite reinforced with oil palm empty fruit bunch fiber and nanosilica, BioResources. 11(1) (2016) 2269-2286.

DOI: 10.15376/biores.11.1.2269-2286

Google Scholar

[9] L. Yu, K. Dean, L. Li, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31(6) (2006) 576-602.

DOI: 10.1016/j.progpolymsci.2006.03.002

Google Scholar

[10] J. Kratochvíl, I. Kelnar, Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system, J. Therm. Anal. Calorim. 130(2) (2017) 1043-1052.

DOI: 10.1007/s10973-017-6417-y

Google Scholar

[11] H. Ebadi-Dehaghani, M. Barikani, H.A. Khonakdar, S.H. Jafari, Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites, J. Therm. Anal. Calorim. 121(3) (2015) 1321-1332.

DOI: 10.1007/s10973-015-4554-8

Google Scholar

[12] N. Shi, Q. Dou, Non-isothermal cold crystallization kinetics of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/treated calcium carbonate composites, J. Therm. Anal. Calorim. 119(1) (2015) 635-642.

DOI: 10.1007/s10973-014-4162-z

Google Scholar

[13] J. Ahmed, S.K. Varshney, R. Auras, S.W.J. Hwang, Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films, J. Food Sci. 75(8) (2010) 97-108.

DOI: 10.1111/j.1750-3841.2010.01809.x

Google Scholar

[14] M.P. Arrieta, M.D. Samper, M. Aldas, J. López, On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications, Materials 10 (2017) 1008.

DOI: 10.3390/ma10091008

Google Scholar

[15] A. Buzarovska, PLA nanocomposites with functionalized TiO2 nanoparticles, Polym. Plast. Technol. Eng. 52(3) (2013) 280-286.

Google Scholar

[16] M. Pluta, A. Galeski, Crystalline and supermolecular structure of polylactide in relation to the crystallization method, J. Appl. Polym. Sci. 86(6) (2002) 1386-1395.

DOI: 10.1002/app.11280

Google Scholar

[17] N. Wang, X. Zhang, X. Ma, J. Fang, Influence of carbon black on the properties of plasticized poly (lactic acid) composites, Polym. Degrad. Stab. 93(6) (2008) 1044-1052.

DOI: 10.1016/j.polymdegradstab.2008.03.023

Google Scholar

[18] I. Harte, C. Birkinshaw, E. Jones, J. Kennedy, E. DeBarra, The effect of citrate ester plasticizers on the thermal and mechanical properties of Poly (DL-lactide), J. Appl. Polym. Sci. (2012) 1-7.

DOI: 10.1002/app.37600

Google Scholar

[19] Q. Zhijun, Z. Xingxiang, W. Ning, F. Jianming, Poly (1,3-butylene adipate) Poly (lactic acid)/carbon black as electrical conductive polymer composites, Polym. Compos. 30(11) (2009) 1576-1584.

DOI: 10.1002/pc.20730

Google Scholar

[20] V.L. Finkenstadt, C.K. Liu, P.H. Cooke, L.S. Liu, J.L. Willett, Mechanical Property Characterization of Plasticized Sugar Beet Pulp and Poly (Lactic Acid) Green Composites Using Acoustic Emission and Confocal Microscopy, J. Polym. Environ. 16(1) (2008) 19-26.

DOI: 10.1007/s10924-008-0085-8

Google Scholar

[21] H. Ge, F. Yang, Y. Hao, G. Wu, H. Zhang, L. Dong, Thermal, mechanical, and rheological properties of plasticized Poly (L-lactic acid), J. Appl. Polym. Sci. 127(4) (2013) 2832-2839.

DOI: 10.1002/app.37620

Google Scholar

[22] Q. Zhang, D. Li, H. Zhang, G. Su, G. Li, Preparation and properties of poly (lactic acid)/sesbania gum/nano-TiO2 composites, Polym. Bull. 75(2) (2018) 623-635.

DOI: 10.1007/s00289-017-2059-2

Google Scholar

[23] H. Anuar, M.S. Razali, H.A. Saidin, A.F.B. Hisham, S.N.E.Z.M. Apandi, F. Ali, Tensile properties of durian skin fibre reinforced plasticized polylactic acid biocomposites, Int. J. Eng. Mater. Manuf. 1(1) (2016) 16-20.

DOI: 10.26776/ijemm.01.01.2016.04

Google Scholar

[24] V.S. Silverajah, N.A. Ibrahim, N. Zainuddin, W.M.Z.W. Yunus, H. A. Hassan, Mechanical, thermal and morphological properties of poly (lactic acid)/epoxidized palm olein blend, Molecules. 17(10) (2012) 11729-11747.

DOI: 10.3390/molecules171011729

Google Scholar

[25] H. Kang, Y. Li, M. Gong, Y. Guo, Z. Guo, Q. Fang, X. Li, An environmentally sustainable plasticizer toughened polylactide, RSC Adv. 8(21) (2018) 11643-11651.

DOI: 10.1039/c7ra13448g

Google Scholar

[26] L.V. Labrecque, R.A. Kumar, V. Dave, R.A. Gross, S.P. McCarthy, Citrate esters as plasticizers for Poly (lactic acid), J. Appl. Polym. Sci. 66(8) (1997)1507-1513.

DOI: 10.1002/(sici)1097-4628(19971121)66:8<1507::aid-app11>3.0.co;2-0

Google Scholar

[27] M. Maiza, M.T. Benaniba, G. Quintard, V. Massardier-Nageotte, Biobased additive plasticizing Polylactic acid (PLA), Polimeros. 25(6) (2015) 581-590.

DOI: 10.1590/0104-1428.1986

Google Scholar

[28] M. Baiardo G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, Thermal and mechanical properties of plasticized Poly (L lactic acid), J. Appl. Polym. Sci. 90(7) (2003) 1731-1738.

DOI: 10.1002/app.12549

Google Scholar

[29] M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-lactic acid: production, applications, nanocomposites, and release studies, Compr. Rev. Food Sci. F 9(5) (2010) 552-571.

DOI: 10.1111/j.1541-4337.2010.00126.x

Google Scholar

[30] H.M. De Azeredo, Nanocomposites for food packaging applications, Food Res. Int. 42(9) (2009) 1240-1253.

DOI: 10.1016/j.foodres.2009.03.019

Google Scholar

[31] S. Singh, M.L. Maspoch, K. Oksman, Crystallization of triethyl‐citrate‐plasticized poly (lactic acid) induced by chitin nanocrystals, J. Appl. Polym. Sci. 136(36) (2019) 47936.

DOI: 10.1002/app.47936

Google Scholar

[32] N. Baek, Y.T. Kim, J.E. Marcy, S.E. Duncan, S.F. O'Keefe, Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide, Food Packag. Shelf Life. 17 (2018) 30-38.

DOI: 10.1016/j.fpsl.2018.05.004

Google Scholar

[33] A. Marra, C. Silvestre, A.P. Kujundziski, D. Chamovska, D. Duraccio, Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons, Polym. Bull. 74(8) (2017) 3027-3041.

DOI: 10.1007/s00289-016-1881-2

Google Scholar

[34] M. Cargnello, T.R. Gordon, C.B. Murray, Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chem. Rev. 114(19) (2014) 9319-9345.

DOI: 10.1021/cr500170p

Google Scholar

[35] R.G. Costa, C. Ribeiro, L.H. Mattoso, Study of the effect of rutile/anatase TiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2 nanocomposites, J. Appl. Polym. Sci. 127(6) (2013) 4463-4469.

DOI: 10.1002/app.38031

Google Scholar

[36] R.G. Costa, C. Ribeiro, L.H. Mattoso, Morphological and photocatalytic properties of PVA/TiO2 nanocomposite fibers produced by electrospinning, J. Nanosci. Nanotechnol. 10(8) (2010) 5144-5152.

DOI: 10.1166/jnn.2010.2405

Google Scholar

[37] L.T. Lim, R. Auras, M. Rubino, Processing technologies for poly (lactic acid), Prog. Polym. Sci. 33(8) (2008) 820-852.

DOI: 10.1016/j.progpolymsci.2008.05.004

Google Scholar

[38] R.E. Drumright, P.R Gruber, D.E. Henton, Polylactic acid technology, Adv. Mater. 12(23) (2000) 1841-1846.

DOI: 10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e

Google Scholar

[39] I. Pillin, N. Montrelay, A. Bourmaud, Y. Grohens, Effect of thermo-mechanical cycles on the physico-chemical properties of poly (lactic acid), Polym. Degrad. Stab. 93(2) (2008) 321-328.

DOI: 10.1016/j.polymdegradstab.2007.12.005

Google Scholar

[40] S. Farah, D.G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review, Adv. Drug Deliv. Rev. 107 (2016) 367-392.

DOI: 10.1016/j.addr.2016.06.012

Google Scholar

[41] I.R. Mustapa, R.A. Shanks, I. Kong, Poly (lactic acid)-Hemp-Nanosilica Hybrid Composites: Thermomechanical, Thermal behavior and Morphological Properties, Int. J. Adv. Sci. Eng. Techol. 3(1) (2013) 192-199.

Google Scholar

[42] I.R. Mustapa, R.A. Shanks, N. Daud, Morphological structure and thermomechanical properties of Hemp Fibre Reinforced Poly (lactic acid) Nanocomposites Plasticized with Tributyl Citrate, Mater. Today: Proceedings 5(1) (2018) 3211-3218.

DOI: 10.1016/j.matpr.2018.01.130

Google Scholar

[43] N.T. Thuy, V.M. Duc, N.T. Liem, Properties of poly (lactic acid) plasticized by epoxidized rubber seed oil, Vietnam J. Chem, 56(2) (2018) 181-186.

DOI: 10.1002/vjch.201800010

Google Scholar

[44] I.R. Mustapa, N. Daud, R.A. Shanks, Non-isothermal Crystallization Kinetics of Plasticized Poly (Lactic Acid) Nanocomposites, J. Adv. Res. Dyn. Control Syst. 12(2) (2020) 701-708.

Google Scholar

[45] M. Pluta, A. Galeski, M. Alexandre, M.A. Paul, P. Dubois, Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties, J. Appl. Polym. Sci. 86(6) (2002) 1497-1506.

DOI: 10.1002/app.11309

Google Scholar

[46] J.L. Zhao, H.W. Pan, H.L. Yang, J.J. Bian, H.L. Zhang, G. Gao, L.S. Dong, Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly (propylene carbonate) Polyurethane Ternary Blends, Chin. J. Polym. Sci. (2019) 1-10.

DOI: 10.1007/s10118-019-2276-2

Google Scholar

[47] Z. Su, Q. Li, Y. Liu, G.H. Hu, C. Wu, Multiple melting behavior of poly (lactic acid) filled with modified carbon black, J. Polym. Sci. B Polym. Phys. 47(20) (2009) 1971-1980.

DOI: 10.1002/polb.21790

Google Scholar