[1]
M. Iwamoto, D. Taguchi, Research trend in thermally stimulated current method for development of materials and devices in Japan, Japp. J. App. Phy. 57(3S2) (2018) 3S2.
DOI: 10.7567/jjap.57.03ea04
Google Scholar
[2]
K. Rojek, R. Schmechel, N. Benson, MIS-TSC: A combination of the thermally stimulated current method and a metal-insulator-semiconductor device for unipolar trap spectroscopy, App. Phy.Lett. 114 (2019) 152104.
DOI: 10.1063/1.5090947
Google Scholar
[3]
W. Wu, Z. Liu, Y. Gu, Z. Yue, Thermally stimulated depolarization current study on barium titanate single crystal, AIP Advc. 8 (2018) 045005.
DOI: 10.1063/1.5025501
Google Scholar
[4]
Y. Naito, K. Uenishi, Electrostatic MEMS vibration energy harvesters inside of tire treads, Sensor 19(4) (2019) 890.
DOI: 10.3390/s19040890
Google Scholar
[5]
J. Zhong, Q. Zhong, G. Chen, S. Zhao, X. Li, N. Wu, W. Li, H. Yu, J. Zhou, Surface charge self-recovering electret film for wearable energy conversion in a harsh environment, Energy Inviron. Sci. 9 (2016) 3085 – 3091.
DOI: 10.1039/c6ee02135b
Google Scholar
[6]
D. Fink, Fundamentals of Ion-Irradiated Polymers: Technology & Engineering, Springer-Verlag, Berlin, (2013).
Google Scholar
[7]
M. Zielinski, M. Kryszewski, Theoretical Analysis of the Thermal Sampling Technique for TSD Measurement on Polymers - Thermally Stimulated Processes in: J.P Fillard and J. van Turnhout, Solids: New Prospects, Elsevier, Amsterdam, (1977).
Google Scholar
[8]
N.A. Halim, Thermo-electrical and mechanical studies on polymer-organically modified montmorillonite composites, PhD Thesis. University Malaya, Kuala Lumpur, (2010).
Google Scholar
[9]
N.A. Halim, A. Ali, Z.H.Z. Abidin, A. B. Ahmad, A. Z. Sulaiman, Z. A. Ibrahim, Thermal analysis of organically modified Ca2+-montmorillonite using DSC and TSC technique, J. Thermal Anal. Calorim. 128 (2017) 135 – 140.
DOI: 10.1007/s10973-016-5946-0
Google Scholar
[10]
G. Kitis, V. Pagonis, S. E. Tzamarias, The influence of competition effects on the initial rise method during thermal stimulation of luminescence: A simulation study, Rad. Measure. 100 (2017) 27 – 36.
DOI: 10.1016/j.radmeas.2017.03.047
Google Scholar
[11]
G. Kitis, R Chen, V Pagonis, Thermoluminescence glow-peak shape method based on mixed order kinetics, Phys. Stat. Sol.(a) 205(5) (2017) 1181 – 1189.
DOI: 10.1002/pssa.200723470
Google Scholar
[12]
G. Kitis, J. M. Gomez-Ros, J. W. N. Tuyn, Thermoluminescence glow-curve deconvolution function for first, second and general orders of kinetics, J. Phy. D: Appl. Phys. 31 (1998) 2636 – 2641.
DOI: 10.1088/0022-3727/31/19/037
Google Scholar
[13]
W.K. Sakamoto, Dilectric spectroscopy and thermally stimulated discharge current in PEEK film, Ecletica Quimica 28(2) 2003 49 – 53.
DOI: 10.1590/s0100-46702003000200006
Google Scholar
[14]
Y. Asano, T. Suzuki, Characteristic of Polyethylene Terephthalate Electrets, Jap. J. app. Phys. 11(6) (1972) 1139 – 1141.
Google Scholar
[15]
P. Fischer, P. Röhl, Thermally Stimulated and Isothermal Depolarisation Currents in Low-density Polyethylene, J. Poly. Sci. Poly. Pyhs. 14 (1976) 531 – 542.
DOI: 10.1002/pol.1976.180140313
Google Scholar
[16]
J. van Turnhout, Thermally Stimulated Discharge of Electrets - Topics in: G.M Sessler, Applied Physics: Electrets, 33 Springer-Verlag, New York, (1980).
DOI: 10.1007/3540173358_11
Google Scholar