[1]
J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development, International Journal of Molecular Sciences 16.1 (2015) 564-596.
DOI: 10.3390/ijms16010564
Google Scholar
[2]
A.M.D. Pascual, Synthesis and Applications of Biopolymer Composites, International Journal of Molecular Sciences 20(9) (2019) 2321- 2328.
Google Scholar
[3]
M. Zubair, A. Ullah, Recent advances in protein derived bionanocomposites for food packaging applications, Critical reviews in food science and nutrition 60(3) (2020) 406- 434.
DOI: 10.1080/10408398.2018.1534800
Google Scholar
[4]
R.L. Reddy, V.S. Reddy, G.A. Gupta, Study of bio-plastics as green and sustainable alternative to plastics, International Journal of Emerging Technology and Advanced Engineering 3(5) (2013) 76-81.
Google Scholar
[5]
Z. Lule, H. Ju, J. Kim, Thermomechanical properties of alumina-filled plasticized polylactic acid: Effect of alumina loading percentage, Ceramics International 44(18) (2018) 22767-22776.
DOI: 10.1016/j.ceramint.2018.09.066
Google Scholar
[6]
S. Saravana, G. Bheemaneni, R. Kandaswamy, Effect of Polyethylene glycol on Mechanical, Thermal, and Morphological Properties of Talc Reinforced Polylactic Acid Composites, Materials Today: Proceedings 5(1) (2018) 1591-1598.
DOI: 10.1016/j.matpr.2017.11.251
Google Scholar
[7]
J. Kong, C. Han, Y. Yu, L. Dong, Production and characterization of sustainable poly(lactic acid) functionalized-eggshell composites plasticized by epoxidized soybean oil, Journal of Materials Science 53(20) (2018) 14386-14397.
DOI: 10.1007/s10853-018-2656-y
Google Scholar
[8]
A. Marra, C. Silvestre, D. Duraccio, S. Cimmino, Polylactic acid/zinc oxide biocomposite films for food packaging application, International Journal of Biological Macromolecules 88(7) (2016) 254-262.
DOI: 10.1016/j.ijbiomac.2016.03.039
Google Scholar
[9]
M. Zorah, I.R. Mustapa, N. Daud, J.H. Nahida, N.A.S. Sudin, Effects of Tributyl Citrate Plasticizer on Thermomechanical Attributes of Poly Lactic Acid, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 62(2) (2019) 274-284.
DOI: 10.37934/arfmts.70.1.97111
Google Scholar
[10]
C. Liao, Y. Li, S.C. Tjong, Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets, Nanomaterials 9(8) (2019) 1102.
DOI: 10.3390/nano9081102
Google Scholar
[11]
A.C. Verdu, M.D. Samper, D.G. Garcia, L.S. Nacher, R. Balart, Plasticization effect of epoxidized cottonseed oil (ECSO) on poly (lactic acid), Industrial Crops and Products 104(10) (2017) 278-286.
DOI: 10.1016/j.indcrop.2017.04.050
Google Scholar
[12]
M. Maiza, M.T. Benaniba, G. Quintard, V.M. Nageotte, Biobased additive plasticizing Polylactic acid (PLA), Polimeros 25(6) (2015) 581-590.
DOI: 10.1590/0104-1428.1986
Google Scholar
[13]
I.R. Mustapa, R.A. Shanks, N. Daud, Morphological structure and thermomechanical properties of hemp fibre reinforced poly (lactic acid) Nanocomposites plasticized with tributyl citrate, Materials Today: Proceedings 5(1) (2018) 3211-3218.
DOI: 10.1016/j.matpr.2018.01.130
Google Scholar
[14]
A. Anžlovar, A. Kržan, E. Žagar, Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing, Arabian Journal of Chemistry 11(3) (2018) 343-352.
DOI: 10.1016/j.arabjc.2017.07.001
Google Scholar
[15]
H. Xiu, H.W. Bai, C.M. Huang, C.L. Xu, X.Y. Li, Q. Fu, Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether) urethane blends, Express Polymer Letters 7(3) (2013) 261-271.
DOI: 10.3144/expresspolymlett.2013.24
Google Scholar
[16]
W. Li, C. Zhang, H Chi, L. Li, T. Lan, P. Han, H. Chen and Y. Qin, Development of antimicrobial packaging film made from poly (lactic acid) incorporating titanium dioxide and silver nanoparticles, Molecules 22(7) (2017) 1170.
DOI: 10.3390/molecules22071170
Google Scholar
[17]
R. Mha, J. Alhamidi, TiO2/polymer nanocomposites for antibacterial packaging applications, Journal of Advancements in Food Technology 1(1) (2018) 1-8.
Google Scholar
[18]
H.S. Patanwala, D. Hong, S.R. Vora, B. Bognet, A.W.K. Ma, The microstructure and mechanical properties of 3D printed carbon nanotube‐polylactic acid composites, Polymer Composites 39(2) (2018) 1060-1071.
DOI: 10.1002/pc.24494
Google Scholar
[19]
J.W. Huang, Y.C. Hung, Y.L. Wen, C.C. Kang, M.Y. Yeh, Polylactide/nano‐and micro‐scale silica composite films. II. Melting behavior and cold crystallization, Journal of applied polymer science, 112(5) (2009) 3149-3156.
DOI: 10.1002/app.29699
Google Scholar
[20]
B.W. Chieng, N.A. Ibrahim, Y.Y. Then, Y.Y. Loo, Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties, Molecules 19(10) (2014) 16024-16038.
DOI: 10.3390/molecules191016024
Google Scholar