[1]
C. Labrecque, M. Gagné, Review ductile iron: fifty years of continuous development, Canadian Metallurgical Quarterly. 37(5) (1998) 343-378.
DOI: 10.1179/cmq.1998.37.5.343
Google Scholar
[2]
F. Iacoviello, V. Di Cocco, C. Bellini, Fatigue crack propagation and damaging micromechanisms in ductile cast irons, International Journal of Fatigue. 124 (2019) 48-54.
DOI: 10.1016/j.ijfatigue.2019.02.030
Google Scholar
[3]
D. A. Colombo, R. C. Dommarco, A. D. Basso, Rolling contact fatigue behavior of dual-phase austempered ductile iron, Wear. 418-419 (2018) 208-214.
DOI: 10.1016/j.wear.2018.11.009
Google Scholar
[4]
A. Masaggia, The development of ADI and IDI in Italy, Procedia Engineering. 2(1) (2010) 1459-1476.
DOI: 10.1016/j.proeng.2010.03.158
Google Scholar
[5]
G. Iannitti, A. Ruggiero, N. Bonora, S. Masaggia, F. Veneri, Micromechanical modelling of constitutive behaviour of austempered ductile iron (ADI) at high strain rate, Theoretical and Applied Fracture Mechanics. 92 (2017) 351-359.
DOI: 10.1016/j.tafmec.2017.05.007
Google Scholar
[6]
A. Bahdanovich, R. Bendikiene, R. Cesnavicius, A. Ciuplys, V. Grigas, A. Jutas, D. Marmysh, A. Mazaleuski, A. Nasan, L. Shemet, S. Sherbakov, K. Spakauskas, L. Sosnovskiy, Research on Tensile Behaviour of New Structural Material MoNiCa, Materials Science (Medžiagotyra) 25 (3) (2019) 292-296.
DOI: 10.5755/j01.ms.25.3.23079
Google Scholar
[7]
B. Wang, M. He, G.C. Barber, J.D. Schall, Ch. Tao, X. Sun, Rolling contact fatigue resistance of austempered ductile iron processed at various austempering holding times, Wear. 398-399 (2018) 41-46.
DOI: 10.1016/j.wear.2017.11.022
Google Scholar
[8]
A. Zammit, S. Abela, J.Ch. Betts, R. Michalczewski, M. Kalbarczyk, M. Grecha, Scuffing and rolling contact fatigue resistance of discrete laser spot hardened austempered ductile iron, Wear. 422-423 (2019) 100-107.
DOI: 10.1016/j.wear.2019.01.061
Google Scholar
[9]
J. Y. Jang, M.M. Khonsar, On the evaluation of fracture fatigue entropy, Theoretical and Applied Fracture Mechanics. 96 (2018) 351-361.
DOI: 10.1016/j.tafmec.2018.05.013
Google Scholar
[10]
R.G. Bayer, Mechanical Wear Fundamentals and Testing, Revised and Expanded. CRC Press, New York. (2004).
Google Scholar
[11]
L. A. Sosnovskiy, A. A. Novikov, S. S. Shcherbakov, V. V. Komissarov, S. A. Tyurin, P. S. Drobyshevsky, Structural material for tribo-fatigue systems: fatigue resistance and structure, Mechanics of Machines, Mechanisms and Materials. 4 (2017) 71-81(in Russian).
Google Scholar
[12]
STB 1448-2004. Tribo-Fatigue. Wear test methods. Tests for mechano-sliding fatigue: Minsk: GOSSTANDART, 2004 (in Russian).
Google Scholar
[13]
МКС 77.080.10; 77.040. High Fatigue Resistance Ductile Cast Iron with Nodular Shaped Graphite. Material Standard (in Russian).
Google Scholar
[14]
G. V. Tsybanev, O. N. Belas, The influence of the magnitude and duration of cyclic loading on the triboteсhnical characteristics of steel 45, Problems of Friction and Wear. 39 (2005) 17-21 (in Russian).
Google Scholar
[15]
L. А. Sosnovskiy, А. V. Bogdanovich, O. M. Yelovoy, S. А. Tyurin, V. V. Komissarov, S. S. Sherbakov, Methods and main results of Tribo-Fatigue tests, International Journal of Fatigue. 66 (2014) 207-219.
DOI: 10.1016/j.ijfatigue.2014.04.006
Google Scholar
[16]
V. T. Sharay, Comprehensive study of wear and fatigue in steels. Kiev, (1959) (in Russian).
Google Scholar