Comparative Study of Plasma Cladded Fe-Based Composite Hardfacings with In Situ Synthesized Cr and Ti Carbide Reinforcement

Article Preview

Abstract:

This study aimed to compare the X3CrNiMo17-13-3 stainless steel based plasma transferred arc (PTA) cladded hardfacings, reinforced with the in-situ synthesized Cr and Ti carbides. Carbon black and either pure Cr, pure Ti, or TiO2 were utilized as reinforcement precursors (the respective hardfacings are further referred to as Cr+C, Ti+C and TiO2+C). The pre-placed mixtures of matrix and reinforcement precursor powders were remelted by the plasma transferred arc, applying the preliminarily optimized process parameters (95 A, 22 – 24 V, 0.2 mm/s). As a reference, the unreinforced stainless steel hardfacing was used. The carbide reinforcement was successfully in-situ synthesized in all the hardfacings. The Cr + C hardfacing exhibited the largest average hardness (556 ± 29 HV1), while the TiO2 + C hardfacing had the largest average Young’s modulus (156.3 ± 19.7 GPa). The Cr + C and Ti + C hardfacings demonstrated the 2.3 and 2.1 times higher resistance to abrasive wear than the reference hardfacing. The TiO2 + C hardfacing showed 1.5 times lower wear resistance than the reference hardfacing presumably due to a lack of the reinforcement and a lower strain hardening ability.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 320)

Pages:

83-89

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Tong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mat. Sci. Eng. R 29 (2000) 49-113.

Google Scholar

[2] T. Mojisola, M.M. Ramakokohvu, J. Raethel, P.A. Olubambi, W.R. Matizamhuka, In-situ synthesis and characterization of Fe-TiC based cermet produced from enhanced carbothermally reduced ilmenite, Int. J. Refract. Met. H. Mater. 78 (2019) 92-99.

DOI: 10.1016/j.ijrmhm.2018.09.002

Google Scholar

[3] X.H. Wang, Z.D. Zou, S.Y. Qu, L. Song, Microstructure and properties of the TiC/Fe-based alloy hardfacing layers, J. Mater. Sci. 40 (2005) 3629-3633.

DOI: 10.1007/s10853-005-0740-6

Google Scholar

[4] S. Ariely, J. Shen, M. Bamberger, F. Dausiger, H. Hugel. Laser surface alloying of steel with TiC, Surf. Coat. Technol. 45 (1991) 403-408.

DOI: 10.1016/0257-8972(91)90249-v

Google Scholar

[5] R.J. Li, Ceramic-metal Composite, second ed., Metallurgical Industry Press, Beijing, (2005).

Google Scholar

[6] X. Sun, J. Huang, J. Yang, S. Chen, Microstructure evolution and mechanical properties of in-situ bimodal TiC-Fe coatings prepared by reactive plasma spraying, Ceram. Int. 45 (2019) 5848-5857.

DOI: 10.1016/j.ceramint.2018.12.051

Google Scholar

[7] X.H. Wang, S.Y. Qu, B.S. Du, Z.D. Zou, In situ synthesized TiC particles reinforced Fe based composite coating produced by laser cladding, Mater. Sci. Technol. 25 (2009) 388-392.

DOI: 10.1179/174328408x265631

Google Scholar

[8] X. Wang, M. Zhang, S. Qu, Development and characterization of (Ti,Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding, Opt. Lasers Eng. 48 (2010) 893-898.

DOI: 10.1016/j.optlaseng.2010.03.017

Google Scholar

[9] A. Khalili, M. Mojtahedi, M. Goodarzi, M.J. Torkamani, Synthesis of Fe-TiC hard coating from ilmenite via laser cladding, Iranian J. Mater. Sci. Eng. 16 (2019) 75-86.

Google Scholar

[10] S. Corujeira Gallo, N. Alam, R. O'Donnel, In situ synthesis of TiC-Fe composite overlays from low cost TiO2 precursors using plasma transferred arc deposition, J. Therm. Spray Technol. 23 (2014) 551-556.

DOI: 10.1007/s11666-013-0052-3

Google Scholar

[11] L. Niu, Y. Xu, H. Wu, W. Wang, Preparation of in situ (Fe,Cr)7C3/Fe composite coating by centrifugal casting, Surf. Eng. 27 (2011) 587-590.

DOI: 10.1179/026708410x12683118611220

Google Scholar

[12] A. Singh, N.B. Dahotre, Laser in-situ synthesis of mixed carbide coating on steel, J. Mater. Sci. 39 (2004) 4553-4560.

DOI: 10.1023/b:jmsc.0000034149.95969.bc

Google Scholar

[13] S.L. Song, W.H. Zhang, Z.D. Zou, S.Y. Qu. In situ formation TiC particles reinforced Fe-based alloy composite coating by GTAW, Tran. China Weld. Inst. 27 (2006) 39.

Google Scholar

[14] X. Wang, Z. Zou, S. Song, S. Qu. Microstructure and wear properties of in-situ TiC/FeCrBSi composite coating prepared by gas tungsten arc welding, Wear 260 (2006) 705-710.

DOI: 10.1016/j.wear.2005.03.018

Google Scholar

[15] F. Sadeghi, H. Nafaji, A. Abbasi. The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy, Surf. Coat. Tech. 324 (2017) 85-91.

DOI: 10.1016/j.surfcoat.2017.05.067

Google Scholar

[16] W. Xibao, W. Xiaofeng, S. Zhongquan. The composite Fe–Ti–B–C coatings by PTA powder surfacing process, Surf. Coat. Tech. 192 (2005) 257-262.

DOI: 10.1016/j.surfcoat.2004.08.210

Google Scholar

[17] P. Zhang, X. Wang, L. Guo, L. Cai, H. Sun. Characterization of in situ synthesized TiB2 reinforcements in iron-based composite coating, Appl. Surf. Sci. 258 (2011) 1592-1598.

DOI: 10.1016/j.apsusc.2011.10.004

Google Scholar

[18] A. Gebert, B. Bouaifi, Surface Protection by Means of Build-Up Welding, in: F.-W. Bach, K. Möhwald, A. Laarmann, T. Wenz, Modern Surface Technology, Wiley VCH Verlag GmbH & Co. KGaa, Weinheim, 2006, pp.263-296.

DOI: 10.1002/3527608818.ch18

Google Scholar

[19] L. Łatka, P. Biskup. Development in PTA surface modifications – A Review, Adv. Mater. Sci. 20 (2020) 39-53.

DOI: 10.2478/adms-2020-0009

Google Scholar

[20] W. Wu, L.Y. Hwu, D.Y. Lin, J.L. Lee, The relationship between alloying elements and retained austenite in martensitic stainless steel welds, Scripta Mater. 42 (2000) 1071-1076.

DOI: 10.1016/s1359-6462(00)00339-0

Google Scholar

[21] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[22] M. Cheng, Q. Zhuang, N. Lin, Y. He, Improvement in microstructure and mechanical properties of Ti(C,N)-Fe cermets with the carbon additions, J. Alloy Compd. 701 (2017) 408-415.

DOI: 10.1016/j.jallcom.2017.01.119

Google Scholar

[23] J.L. Liao, J. Li, X.D. Wang, Z.T. Zhang, Influence of TiO2 and basicity on viscosity of Ti bearing slag, Ironmak. Steelmak. 39 (2012) 133-139.

Google Scholar

[24] S.R. Shatynski. The thermochemistry of transition metal carbides, Oxid. Met. 13 (1979) 105-118.

DOI: 10.1007/bf00611975

Google Scholar

[25] G. Krauss, Principles of Heat Treatment of Steel, ASM International, Materials Park, (1980).

Google Scholar

[26] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behaviour, Wear. 246 (2000) 1-11.

DOI: 10.1016/s0043-1648(00)00488-9

Google Scholar

[27] O.A. Zambrano, E.C. Muños, S.A. Rodríguez, J.J. Coronado, Running-in period for the abrasive wear of austenitic steels, Wear. 452-453 (2020) 203298.

DOI: 10.1016/j.wear.2020.203298

Google Scholar