Deposition of YSZ Layer by PS-PVD on Different Materials

Article Preview

Abstract:

Plasma Spray Physical Vapour Deposition (PS-PVD) method was designed for production of ceramic layer on nickel superalloys. In typical process before deposition the base material is heated by plasma up to 900 °C. In present article the yttria stabilized zirconia (YSZ) was deposited on low melting point materials: 2017A-type aluminium alloy and Cu-ETP copper. The influence of power current, process time and powder feed rate on structure and thickness of obtained coatings was analysed. During first deposition process the overheating of Al-sample was observed and as result the power current was decreased to 1600 A. In the next experimental the approx. 5 mm thick dense coating was formed. During experimental processes of YSZ deposition on copper the thickness of coating increased from approx. 5 to 22 mm. The copper-oxide layer was formed under ceramic layer. The microscopic assessment showed the difficulties in formation of columnar ceramic layer on use base materials. The obtained coating was characterized by dense structure as a result of lower plasma energy during process. The increasing of power current is not possible in the case of overheating of base material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 320)

Pages:

72-76

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Lashmi, P.V. Ananthapadmanabhan, G. Unnikrishnan, S.T. Aruna, Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems, Jour. of the Europ. Cer. Soc. 2020 40(8) 2731-2745.

DOI: 10.1016/j.jeurceramsoc.2020.03.016

Google Scholar

[2] Z. Cheng, J. Yang, F. Shao, X. Zhong, H. Zhao, Y. Zhuang, J. Ni, S. Tao, Thermal stability of YSZ coatings deposited by plasma spray-physical vapor deposition, Coatings. 9 (2019) 464.

DOI: 10.3390/coatings9080464

Google Scholar

[3] J. Wen, C. Song, T. Liu, Z. Deng, S. Niu, Y. Zhang, L. Liu, M. Liu, Fabrication of dense Gadolinia-Doped Ceria coatings via very-low-pressure plasma spray and plasma spray-physical vapor deposition proces, Coatings. 9 (11) (2019) 717.

DOI: 10.3390/coatings9110717

Google Scholar

[4] D. Marcano, M.E. Ivanova, G. Mauer, Y.J. Sohn, A. Schwedt, M. Bram, N.H. Menzler, R. Vaßen, PS-PVD Processing of Single-Phase Lanthanum Tungstate Layers for Hydrogen-Related Applications, Jour. of Ther. Spr. Techn. 28 (7) (2019) 1554-1564.

DOI: 10.1007/s11666-019-00935-4

Google Scholar

[5] X. Zhang, C.Y.R. Wang, C. Deng, X. Liang, Z. Deng, S. Niu, J. Song, G. Liu, M. Liu, K. Zhou, J. Lu, J. Feng, Mechanism of vertical crack formation in Yb2SiO5 coatings deposited via plasma spray-physical vapor deposition, Jour. of Mater. 6 (1) (2020) 102-108.

DOI: 10.1016/j.jmat.2020.01.002

Google Scholar

[6] B.J. Harder, Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition, Surface and Coatings Technology. 384 (2019) 125311.

DOI: 10.1016/j.surfcoat.2019.125311

Google Scholar

[7] J. Barczyk, G. Dercz, I. Matuła, M. Góral, J. Maszybrocka, D. Bochenek, W. Gurdziel, Microstructure and properties of ysz coatings prepared by plasma spray physical vapor deposition for biomedical application, Arch. of Metall. and Mat. 64 (2) (2019) 779-783.

DOI: 10.3390/coatings11111348

Google Scholar

[8] M.E. Ivanova, W. Deibert, D. Marcano, S. Escolástico, G. Mauer, W.A. Meulenberg, M. Bram, J.M. Serra, R. Vaßen, O. Guillon, Lanthanum tungstate membranes for H2 extraction and CO2 utilization: Fabrication strategies based on sequential tape casting and plasma-spray physical vapor deposition, Sep. and Purif. Techn. 219 (2019) 100-112.

DOI: 10.1016/j.seppur.2019.03.015

Google Scholar

[9] K. Szymański, M. Góral, T. Kubaszek, P.C. Monteiro, Microstructure of TBC coatings deposited by HVAF and PS-PVD methods, Sol. St. Phen. 227 (2015) 227 373-376.

DOI: 10.4028/www.scientific.net/ssp.227.373

Google Scholar

[10] M. Drajewicz, K. Dychton, M. Pytel, The new idea for modification of the surface area of silicate glass, Jour. of Ther. Anal. and Calor. 138 (2019) 4223–4228.

DOI: 10.1007/s10973-019-08874-6

Google Scholar

[11] W. He, G. Mauer, M. Gindrat, et al., Investigations on the nature of ceramic deposits in plasma spray–physical vapor deposition. Jour. Therm Spray Tech. 26 (2017) 83-92.

DOI: 10.1007/s11666-016-0513-6

Google Scholar

[12] M. Goral, S. Kotowski, J. Sieniawski, The technology of plasma spray physical vapour deposition, High Temp. Mat. and Proc. 32 (1) (2013) 33-39.

DOI: 10.1515/htmp-2012-0051

Google Scholar

[13] P. Ctibor, Z. Pala, B. Nevrlá, K. Neufuss, Plasma-sprayed fine-grained zirconium silicate and its dielectric properties, Jour. of Mater. Eng. and Perf., 26 (5) (2017) 2388-2393.

DOI: 10.1007/s11665-017-2650-6

Google Scholar