The Influence of Process Parameters on Structure and Phase Composition of Boride Coatings Obtained on X39CrMo17-1 Stainless Steel

Article Preview

Abstract:

The boride coatings are characterized by attractive set of properties: high wear resistance and good high-temperature corrosion. In present research the diffusion boride coatings were obtained on X39CrMo17-1 stainless steel. The pack-boriding process was conducted using commercial Ekabor 2 powder. The influence of time of process on thickness and chemical composition was analysed. The boriding process was conducted in 2, 4, 6 hours at 1000 °C using retort furnace. The obtained coating was characterized by double layer structure and contained the FeB in outer layer and Fe2B in inner layer. The thickness of boride coatings increased with process time. The analysis of obtained results showed that the optimal thickness of coating was obtained during 4-h pack boriding.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 320)

Pages:

55-59

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sen, U. Sen, C. Bindal, An approach to kinetic study of borided steels, Surf. Coat. Tech. 191 (2005) 274-285.

DOI: 10.1016/j.surfcoat.2004.03.040

Google Scholar

[2] M. Campos, A. Palomar, R. Amador, J. Ganem, J. Martinez, Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process, Surf. Coat. Tech. 201 (2006) 2438-2442.

DOI: 10.1016/j.surfcoat.2006.04.017

Google Scholar

[3] M. Keddam, S.M. Chentcuf, A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding, Appl. Surf. Sci. 252 (2005) 393-399.

DOI: 10.1016/j.apsusc.2005.01.016

Google Scholar

[4] M.A. Bejar, E. Moreno, Abrasive wear resistance of boronized carbon and low-alloy steels, J. Mater. Process. Technol. 171 (2006) 352-358.

DOI: 10.1016/j.jmatprotec.2005.12.006

Google Scholar

[5] F.Sh. Cheng, K.L. Wang, The kinetics and mechanism of multi-component diffusion on AISI 145 steel, Surf. Coat. Tech. 115 (1999) 239-248.

Google Scholar

[6] I. Campos-Silva, M. Ortiz-Domingues, N. Lopez-Perrusqia, A. Meneses-Amador, R. Escobar-Galindo, J. Martinez-Trinidad, Characterization of AISI 4140 borided steels, Appl. Surf. Sci. 256 (2010) 2372-2379.

DOI: 10.1016/j.apsusc.2009.10.070

Google Scholar

[7] M. Ortiz-Domingues, Q.A. Gomez-Vargas, M. Keddam, A. Arenes-Flores, J. Garcia-Serrano, Kinetics of boron diffusion and characterization of Fe2B layers on AiSI 9840 steel, Prot. Mater. and Phys. Chem. Surf. 53(3) (2017) 534-547.

DOI: 10.1134/s2070205117030169

Google Scholar

[8] K. Genel, I. Ozbek, C. Bindal, Kinetics of boriding of AISI W1 Steel, Mater. Sci. Eng. A347 (2003) 311-314.

DOI: 10.1016/s0921-5093(02)00607-x

Google Scholar

[9] I. Campos-Silva, M. Ortiz Dominguez, C. Tapia-Quintero, M.Y. Jimenez-Reyes, E. Chevez-Gutierez, Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel, J. Mater. Eng. Perform. 2(8) (2012) 1714-1723.

DOI: 10.1007/s11665-011-0088-9

Google Scholar

[10] Y. Kayali, Investigation of diffusion kinetics of borided stainless steels, Phys Met. Metall. 114(12) (2013) 1061-1068.

DOI: 10.1134/s0031918x1322002x

Google Scholar

[11] N. Ueda, T. Mizukoshi, K. Demizu, T. Sone, A. Ikenaga, M. Kawamoto, Boriding of Nickel by powder-pack method, Surf. Coat. Tech. 126 (2000) 25-30.

DOI: 10.1016/s0257-8972(00)00517-x

Google Scholar

[12] Z. Nait Abdellach, M. Keddam, A. Elias, Modelling the bonizing kinetics in AISI 316 stainless steel, Accta Phys. Polon. A 122 (2012) 3 588-592.

DOI: 10.12693/aphyspola.122.588

Google Scholar

[13] I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, M.Y. Jiménez-Reyes, Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels, Surf. and Coat Techn. 205(2) (2010) 403-412.

DOI: 10.1016/j.surfcoat.2010.06.068

Google Scholar

[14] I. Mejía-Caballero, M. Palomar-Pardavé, J. Martínez Trinidad, M. Romero-Romob, R. Pérez Pasten-Borja, L. Lartundo-Rojas, C. López-García, I. Campos-Silva, Corrosion behavior of AISI 316 L borided and non-borided steels immersed in a simulated body fluid solution, Surf. Coat. Tech. 280 (2015) 384-395.

DOI: 10.1016/j.surfcoat.2015.08.053

Google Scholar

[15] M. Kheyrodin, A. Habibolahzadeh, S.B. Mousavi, Wear and corrosion behaviors of duplex surface treated 316L austenitic stainless steel via combination of boriding and chromizing, Prot. of Met. and Phys. Chem. of Surf. 53(1) (2017) 1 105-111.

DOI: 10.1134/s2070205117010117

Google Scholar

[16] S. Campos-Silva, S. Bernabe ́-Molina, D. Bravo-Ba ́rcenas, J. Martı ́nez-Trinidad, G. Rodrı ́guez-Castro, A. Meneses-Amador, Improving the adhesion resistance of the boride coatings to AISI 316L steel substrate by diffusion annealing, Prot. of Met. and Phys. Chem. of Surf. 25 (2016) 3852-3862.

DOI: 10.1007/s11665-016-2201-6

Google Scholar

[17] M.S. Karakaş, A. Günen, E. Kanca, E. Yilmaz, Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders, Arch. Metall. Mater. 63(1) (2018) 159-165.

Google Scholar