[1]
S. Sen, U. Sen, C. Bindal, An approach to kinetic study of borided steels, Surf. Coat. Tech. 191 (2005) 274-285.
DOI: 10.1016/j.surfcoat.2004.03.040
Google Scholar
[2]
M. Campos, A. Palomar, R. Amador, J. Ganem, J. Martinez, Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process, Surf. Coat. Tech. 201 (2006) 2438-2442.
DOI: 10.1016/j.surfcoat.2006.04.017
Google Scholar
[3]
M. Keddam, S.M. Chentcuf, A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding, Appl. Surf. Sci. 252 (2005) 393-399.
DOI: 10.1016/j.apsusc.2005.01.016
Google Scholar
[4]
M.A. Bejar, E. Moreno, Abrasive wear resistance of boronized carbon and low-alloy steels, J. Mater. Process. Technol. 171 (2006) 352-358.
DOI: 10.1016/j.jmatprotec.2005.12.006
Google Scholar
[5]
F.Sh. Cheng, K.L. Wang, The kinetics and mechanism of multi-component diffusion on AISI 145 steel, Surf. Coat. Tech. 115 (1999) 239-248.
Google Scholar
[6]
I. Campos-Silva, M. Ortiz-Domingues, N. Lopez-Perrusqia, A. Meneses-Amador, R. Escobar-Galindo, J. Martinez-Trinidad, Characterization of AISI 4140 borided steels, Appl. Surf. Sci. 256 (2010) 2372-2379.
DOI: 10.1016/j.apsusc.2009.10.070
Google Scholar
[7]
M. Ortiz-Domingues, Q.A. Gomez-Vargas, M. Keddam, A. Arenes-Flores, J. Garcia-Serrano, Kinetics of boron diffusion and characterization of Fe2B layers on AiSI 9840 steel, Prot. Mater. and Phys. Chem. Surf. 53(3) (2017) 534-547.
DOI: 10.1134/s2070205117030169
Google Scholar
[8]
K. Genel, I. Ozbek, C. Bindal, Kinetics of boriding of AISI W1 Steel, Mater. Sci. Eng. A347 (2003) 311-314.
DOI: 10.1016/s0921-5093(02)00607-x
Google Scholar
[9]
I. Campos-Silva, M. Ortiz Dominguez, C. Tapia-Quintero, M.Y. Jimenez-Reyes, E. Chevez-Gutierez, Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel, J. Mater. Eng. Perform. 2(8) (2012) 1714-1723.
DOI: 10.1007/s11665-011-0088-9
Google Scholar
[10]
Y. Kayali, Investigation of diffusion kinetics of borided stainless steels, Phys Met. Metall. 114(12) (2013) 1061-1068.
DOI: 10.1134/s0031918x1322002x
Google Scholar
[11]
N. Ueda, T. Mizukoshi, K. Demizu, T. Sone, A. Ikenaga, M. Kawamoto, Boriding of Nickel by powder-pack method, Surf. Coat. Tech. 126 (2000) 25-30.
DOI: 10.1016/s0257-8972(00)00517-x
Google Scholar
[12]
Z. Nait Abdellach, M. Keddam, A. Elias, Modelling the bonizing kinetics in AISI 316 stainless steel, Accta Phys. Polon. A 122 (2012) 3 588-592.
DOI: 10.12693/aphyspola.122.588
Google Scholar
[13]
I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, M.Y. Jiménez-Reyes, Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels, Surf. and Coat Techn. 205(2) (2010) 403-412.
DOI: 10.1016/j.surfcoat.2010.06.068
Google Scholar
[14]
I. Mejía-Caballero, M. Palomar-Pardavé, J. Martínez Trinidad, M. Romero-Romob, R. Pérez Pasten-Borja, L. Lartundo-Rojas, C. López-García, I. Campos-Silva, Corrosion behavior of AISI 316 L borided and non-borided steels immersed in a simulated body fluid solution, Surf. Coat. Tech. 280 (2015) 384-395.
DOI: 10.1016/j.surfcoat.2015.08.053
Google Scholar
[15]
M. Kheyrodin, A. Habibolahzadeh, S.B. Mousavi, Wear and corrosion behaviors of duplex surface treated 316L austenitic stainless steel via combination of boriding and chromizing, Prot. of Met. and Phys. Chem. of Surf. 53(1) (2017) 1 105-111.
DOI: 10.1134/s2070205117010117
Google Scholar
[16]
S. Campos-Silva, S. Bernabe ́-Molina, D. Bravo-Ba ́rcenas, J. Martı ́nez-Trinidad, G. Rodrı ́guez-Castro, A. Meneses-Amador, Improving the adhesion resistance of the boride coatings to AISI 316L steel substrate by diffusion annealing, Prot. of Met. and Phys. Chem. of Surf. 25 (2016) 3852-3862.
DOI: 10.1007/s11665-016-2201-6
Google Scholar
[17]
M.S. Karakaş, A. Günen, E. Kanca, E. Yilmaz, Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders, Arch. Metall. Mater. 63(1) (2018) 159-165.
Google Scholar