[1]
M. Hu, K. Li, H. Li, T. Feng, L. Li, Influence of β-SiC on the microstructures and thermal properties of SiC coatings for C/C composites, Surf. & Coat. Techn. 304 (2016) 188-194. http://dx.doi.org/10.1016/j.surfcoat.2016.07.010.
DOI: 10.1016/j.surfcoat.2016.07.010
Google Scholar
[2]
J.P. Zhang, Q.G. Fu, H.J. Li, G.D. Sun, C. Sun, X.Y. Nan, S.F. Li, L. Liu, Ablation behavior of Y2SiO5/SiC coating for C/C composites under oxyacetylene torch, Corr. Sci. 87 (2014) 472-478. http://dx.doi.org/10.1016/j.corsci.2014.07.008.
DOI: 10.1016/j.corsci.2014.07.008
Google Scholar
[3]
Q.G. Fu, H.J. Li, X.H. Shi, X.L. Liao, K.Z. Li, Huang Min, Microstructure and anti-oxidation property of CrSi2–SiC coating for carbon/carbon composites, Appl. Surf. Sci. 252 (2006) 3475-3480. http://dx.doi.org/10.1016/j.apsusc.2005.05.018.
DOI: 10.1016/j.apsusc.2005.05.018
Google Scholar
[4]
P. Wang, H. Li, J. Sun, R. Yuan, L. Zhang, Y. Zhang, T. Li, The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating, Surf. & Coat. Techn. 339 (2018) 124-131. https://doi.org/10.1016/j.surfcoat.2018.02.029.
DOI: 10.1016/j.surfcoat.2018.02.029
Google Scholar
[5]
Q.G. Fu, H.J Li, Y.J. Wang, K.Z. Li, H. Wu, A Si–SiC oxidation protective coating for carbon/carbon composites prepared by a two-step pack cementation, Ceramics International. 35 (2009) 2525-2529. https://doi.org/10.1016/j.ceramint.2009.01.005.
DOI: 10.1016/j.ceramint.2009.01.005
Google Scholar
[6]
X. Ren, H. Lin, Y. Chu, K. Li, Q. Fu, ZrB2–SiC gradient oxidation protective coating for carbon/carbon composites, Ceramics International 40 (2014) 7171-7176. http://dx.doi.org/10.1016/j.ceramint.2013.12.055.
DOI: 10.1016/j.ceramint.2013.12.055
Google Scholar
[7]
B. Zhang, J. Huang, H. Ouyang, L. Cao, C. Li, A mullite oxidation protective coating on SiC coated carbon/carbon composites by hot dipping, Ceramics International. 42 (2016) 17932-17935. http://dx.doi.org/10.1016/j.ceramint.2016.08.044.
DOI: 10.1016/j.ceramint.2016.08.044
Google Scholar
[8]
Y. Jiang, T. Liu, H. Rua, W. Wang, C. Zhang, X. Yuea, Ultra-high-temperature ceramic TaB2-SiC-Si coating by impregnation and in-situ reaction method to prevent graphite materials from oxidation and ablation, Ceramics International. 45 (2019) 6541-6551. https://doi.org/10.1016/j.ceramint.2018.12.148.
DOI: 10.1016/j.ceramint.2018.12.148
Google Scholar
[9]
X. Ren, H. Li, Q. Fu, Y. Chu, K. Li, aB2–SiC–Si multiphase oxidation protective coating for SiC-coated carbon/carbon composites, Journal of the European Ceramic Society. 33 (2013) 2953-2959. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.06.028.
DOI: 10.1016/j.jeurceramsoc.2013.06.028
Google Scholar
[10]
L. Wang, Q. Fu, F. Zhao, Z. Zhao, Constructing self-healing ZrSi2-MoSi2 coating for C/C composites with enhanced oxidation protective ability, Surface & Coatings Technology. 347 (2018) 257-269. https://doi.org/10.1016/j.surfcoat.2018.05.002.
DOI: 10.1016/j.surfcoat.2018.05.002
Google Scholar
[11]
F. Liua, H. Lia, S. Gua, X. Yaoa, Q. Fu, Effect of Y2O3 on the oxidation properties of ZrSi2/SiC coating prepared by T SAPS on the carbon-carbon composites, Cer. Int. 44 (2018) 15065-15071. https://doi.org/10.1016/j.ceramint.2018.05.138.
DOI: 10.1016/j.ceramint.2018.05.138
Google Scholar
[12]
Y. Jia, H. Li, Q. Fu, J. Sun, A ZrC-SiC/ZrC-LaB6/ZrC multilayer ablation resistance coating for SiC-coated carbon/carbon composites, Surf. and Coat. Techn. 309 (2017) 545-553. https://doi.org/10.1016/j.surfcoat.2016.12.010.
DOI: 10.1016/j.surfcoat.2016.12.010
Google Scholar
[13]
M. Goral, S. Kotowski, J. Sieniawski, The technology of plasma spray physical vapour deposition, High Temp. Mat. and Proc. 32(1) (2013) 33-39. https://doi.org/10.1515/htmp-2012-0051.
DOI: 10.1515/htmp-2012-0051
Google Scholar
[14]
M. Góral, R. Swadźba, T. Kubaszek, TEM investigations of TGO formation during cyclic oxidation in two- and three-layered Thermal Barrier Coatings produced using LPPS, CVD and PS-PVD methods, Surf. and Coat. Techn., 394 (2020) 125875. https://doi.org/10.1016/j.surfcoat.2020.125875.
DOI: 10.1016/j.surfcoat.2020.125875
Google Scholar
[15]
M. Goral, M. Pytel, M. Drajewicz, The formation of TBCs using LPPS, CVD and PS-PVD methods on CMSX-4 single-crystal nickel superalloy, Sol. St. Phen, 227 (2015) 317-320. https://doi.org/10.4028/www.scientific.net/SSP.227.317.
DOI: 10.4028/www.scientific.net/ssp.227.317
Google Scholar
[16]
W. He, G. Mauer, M. Gindrat, R. Wäger, R, Vaßen, Investigations on the nature of ceramic deposits in plasma spray–physical vapor deposition. J. Therm. Spray. Tech, 26 (2017) 83-92. https://doi.org/10.1007/s11666-016-0513-6.
DOI: 10.1007/s11666-016-0513-6
Google Scholar
[17]
B. Zhang, L. Wei, L. Gao, H. Guo, H. Xu, Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures, Surf. Coat., Tech. 311 (2019) 199-205. https://doi.org/10.1016/j.surfcoat.2016.12.117.
DOI: 10.1016/j.surfcoat.2016.12.117
Google Scholar
[18]
F. Liu, M. Liu, J. Mao, Z. Deng, J. Ma, C. Deng, D. Zeng, Influence of H 2 Flow Rate on Structure and Erosion Resistance of Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition, Chin. Jour. of Mat. Res. 32(9) (2018) 641-646. https://doi.org/10.11901/1005.3093.2017.347.
DOI: 10.1007/s12598-018-1041-y
Google Scholar