The Duplex Coating Formation Using Plasma Nitriding and CrN PVD Deposition on X39CrMo17-1 Stainless Steel

Article Preview

Abstract:

The nitriding process is a well-known technology for increasing of wear resistance of steel. The conventional gas nitriding process of stainless steel is difficult in the case of surface passivation and formation of Cr2O3. The using of plasma enables to form hard surface area during the nitriding process. The plasma nitriding process was developed using Ionit Metaplas device. The kinetic growth was analysed in 2, 4, 6 and 8 h processes. The plasma gasses composition was selected for formation only diffusion layer without “white area” of nitrides. The microstructure, chemical and phase composition were analysed. As a result, the diffusion layer was formed. The iron nitrides formed the precipitations in the diffusion layer. The obtained results showed that 4h process enables to form nitride layer with required composition and hardness. The relationship between process time and nitride layer thickness and its hardness was observed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 320)

Pages:

43-48

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Lin, X. Li, H. Dong, P. Guo, D. Gu, Nitrogen mass transfer and surface layer: formation during the active screen nitriding of austenitic stainless steels, Vacuum. 148 (2018) 224-229.

DOI: 10.1016/j.vacuum.2017.11.022

Google Scholar

[2] Y. Cheng, L. Wang, R. He, Y. Wang, Friction and wear behaviour of titanium plasma nitrided layer, Jinshu Rechuli/Heat Treatment of Metals. 44(10) (2019) 170-172.

Google Scholar

[3] G.C. Mondragón-Rodríguez, N. Torres-Padilla, N. Camacho, D.G. Espinosa-Arbeláez, G.V. de León-Nope, J.M. González-Carmona, J.M. Alvarado-Orozco, Surface modification and tribological behavior of plasma nitrided Inconel 718 manufactured via direct melting laser sintering method, Surf. Coat. Techn. 387 (2020) 125526.

DOI: 10.1016/j.surfcoat.2020.125526

Google Scholar

[4] L. Nosei, S. Farina, M. Avalos, L. Nachez, B.J. Gomez, J. Feugeas, Corrosion behaviour of ion nitrided AISI 316L stainless steel, Thin Solid Films. 516(6) (2008) 144-1050.

DOI: 10.1016/j.tsf.2007.08.072

Google Scholar

[5] L. Gil, S. Bruhl, L. Jemenez, O. Leon, G. Guevara, M.H. Staia, Corrosion performance of the plasma nitrided 316L stainless steel, Surf. Coat. Techn. 201 (2006) 4424-4429.

DOI: 10.1016/j.surfcoat.2006.08.081

Google Scholar

[6] E. Junior, R.M. Bendeira, M.D. Manfrinto, J.A. Moreto, B. Borges, S. Vales, P.A. Suziki, L.S. Rossino, Effect of ionic plasma nitriding process on the corrosion and micro-abrasive wear behaviour of AISI 316L austenitic and AISI 470 super-ferritic stainless steels. Jour. Mat. Res. and Techn. 8(2) (2019) 2180-2191.

DOI: 10.1016/j.jmrt.2019.02.006

Google Scholar

[7] E. De Las Heras, G. Ybarra, D. Lamas, A. Cabo, E.L. Dalibon, S.P. Bruhl, Plasma nitriding of 316L stainless steel in two different H2-N2 atmospheres – influence on microstructure and corrosion resistance, Surf. Coat. Techn. 313 (2017) 47-54.

DOI: 10.1016/j.surfcoat.2017.01.037

Google Scholar

[8] Y. Li, Z. Wang, L. Wang, Surface properties of nitrided layer on AISI 316 L austenitic stainless steel produced by high-temperature plasma nitriding in short time, Appl. Surf. Sc. 298 (2014) 243-250.

DOI: 10.1016/j.apsusc.2014.01.177

Google Scholar

[9] S.D. de Suoza, M. Olzon-Dionysio, E.J. Miola, C.O. Paiva-Santos, Plasma nitriding of sintered AiSi 316L at several temperatures, Surf. Coat. Techn. 184 (2004) 176-181.

DOI: 10.1016/j.surfcoat.2003.11.007

Google Scholar

[10] A. Nishimoto, T. Fukube, T. Tanaka, Effect of surface deposits on nitriding formation of active screen plasma nitriding, Mat. Trans. 57(10) (2016) 1811-1815.

DOI: 10.2320/matertrans.m2016209

Google Scholar

[11] F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature, Surf. Coat. Techn. 200 (2005) 2474-2480.

DOI: 10.1016/j.surfcoat.2004.07.110

Google Scholar

[12] A. Dalke, I. Burlacov, S. Hamann, Al. Puth, J. Bocker, H.J. Spies, J. Ropcke, H. Biermann, Solid Carbon active screen plasma nitrocarburizing of AISI 316L stainless steel: Influence of N2-H2 gas composition on structure and properties of expanded austenite, Surf. Coat. Techn. 357 (2019), 1060-1068.

DOI: 10.1016/j.surfcoat.2018.10.095

Google Scholar

[13] M. Jayalakshmi, P. Huilgol, E.R. Bhat, K.U. Bhat, Material characterization of low temperature plasma nitrided 316L stainless steel surface with prior severe shot peening, Mat. and Des. 108 (2016) 448-454.

DOI: 10.1016/j.matdes.2016.07.005

Google Scholar

[14] J.C. Diaz-Guillen, M. Naeem, J.L. Acevedo-Davila, H.M. Hdz-Garcia, J. Igbal, M.A. Khan, J. Mayen, Improved mechanical properties, wear and corrosion resistance of 316L steel by homogenous chromium nitride layer synthesis using plasma nitriding, Jour. of Mat. Eng. and Perf. 29(2) (2020) 877-889.

DOI: 10.1007/s11665-020-04653-9

Google Scholar

[15] S. Adachi, N. Ueda, Formation of expanded austenite on cold-sprayed AiSi 316L coating by low-temperature plasma nitriding, Jour. of Ther. Spray Techn. 24(8) (2015) 1399-1406.

DOI: 10.1007/s11666-015-0278-3

Google Scholar

[16] Gronostajski, Z., Kaszuba, M., Widomski, P., Smolik, J., Ziemba, J., Hawryluk, M., Analysis of wear mechanisms of hot forging tools protected with hybrid layers performed by nitriding and PVD coatings deposition, Wear. 420-421 (2019) 269-280.

DOI: 10.1016/j.wear.2019.01.003

Google Scholar

[17] D. Panfil, M. Kulka, P. Wac, J. Michalski, Microstructure and wear resistance of gas-nitrided steel after laser modification, Jour. of Achiev. in Mat. and Manuf. Eng. 1(85) (2017) 12-20.

DOI: 10.5604/01.3001.0010.7984

Google Scholar

[18] Y. Xi, D. Liu, D. Han, Improvement of erosion and erosion-corrosion resistance of AISI420 stainless steel by low-temperature plasma nitriding, Appli. Surf. Sci. 254(18) (2008) 5953-5958.

DOI: 10.1016/j.apsusc.2008.03.189

Google Scholar

[19] F. Cajner, S. Kovacic, H. Rafael, A. Vugrincic, V. Simunovic, B. Grzdeta., Influence of nitriding on corrosion resistance of martensitic X17CrNi16-2 stainless steel, Mat. Sci. Eng. Techn. 46 (2015) 69-77.

DOI: 10.1002/mawe.201400386

Google Scholar

[20] S. Guruvenket, D. Li, J.E. Klemberg-Sapieha, L. Martinu, J. Szpunar, Mechanical and tribological properties of duplex treated TiN, nc-TiN/a-SiNx and n-TiCN/a-SiCN coatings deposited on 410 low alloy stainless steel, Surf. Coat. Techn. 203 (2009) 2905-2911.

DOI: 10.1016/j.surfcoat.2009.03.009

Google Scholar