[1]
Nurettin Eltugral, Hamza Simsir, Selhan Karagoz, Preparation of nano-silver-supported activated carbon using different ligands, Res Chem Intermed. 42 (2016) 1663–1676.
DOI: 10.1007/s11164-015-2110-6
Google Scholar
[2]
N. Byamba-Ochir, B. Buyankhishig, N. Byambasuren, E. Surenjav. A preliminary resulton synthesis of activated carbon supported with silver nanoparticles in supercritical water medium, Bulletin of Buryat State University. Physics. Chemistry 1 (2018) 1-9.
DOI: 10.4028/www.scientific.net/ssp.288.59
Google Scholar
[3]
N. Byamba-Ochir, B. Buyankhishig, N. Byambasuren, E. Surenjav. Characterization of Silver Loaded Activated Carbon Prepared under Supercritical Water Condition, Solid State Phenomena 288 (2019) 59-64.
DOI: 10.4028/www.scientific.net/ssp.288.59
Google Scholar
[4]
V. Thamilselvi and K. V. Radha, Silver nanoparticle loaded silica adsorbent for wastewater treatment, Korean J. Chem. Eng., 34(6) (2017) 1801-1812.
DOI: 10.1007/s11814-017-0075-4
Google Scholar
[5]
Apryatina, K.V., Gribanova, M.V., Markin, A.V. et al. Silver nanoparticle–chitosan complexes and properties of their composites. Nanotechnol. Russia 11 (2016) 766–775.
DOI: 10.1134/s1995078016060033
Google Scholar
[6]
Y. Hao, A.S. Teja. Continuous hydrothermal crystallization of α–Fe2O3 and Co3O4 nanoparticles, J. Mater. Res. 18 (2003) 415-422.
Google Scholar
[7]
O. Sawai, Y. Oshima. Mechanism of silver nanoparticles formation on -alumina using supercritical water. J. Mater. Sci. 43 (2008) 2293-2299.
DOI: 10.1007/s10853-007-2031-x
Google Scholar
[8]
K. Burappa, S.Ohara, T. Adschiri, Nanoparticle synthesis using supercritical fluid technology-towards biomedical applications, Advanced drug delivery reviews, 60 (2008), 299-327.
DOI: 10.1016/j.addr.2007.09.001
Google Scholar
[9]
Zhen Fang, Rapid Production of Micro- and Nano-particles Using Supercritical Water.1st Edition. 2010. Buch. xxviii, 92 S. Hardcover, ISBN 978-3-642-12986-5.
Google Scholar
[10]
Nobuaki Aoki, Ayato Sato, Hikari Sasaki, Andrzej-Alexander Litwinowicz Gimyeong Seong Tsutomu Aida, Daisuke Hojo, Seiichi Takami, Tadafumi Adschiri, Kinetics study to identify reaction-controlled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors, The Journal of Supercritical Fluids, 110 (2016) 161-166.
DOI: 10.1016/j.supflu.2015.11.015
Google Scholar
[11]
Hong, S., Nugroho, A., Kim, S.J. et al. Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications. Res Chem Intermed 37 (2011) 429–440.
DOI: 10.1007/s11164-011-0273-3
Google Scholar
[12]
Anikeev, V.I. Hydrothermal synthesis of metal oxide nano- and microparticles in supercritical water. Russ. J. Phys. Chem. 85 (2011) 377–382.
DOI: 10.1134/s0036024411030034
Google Scholar
[13]
B. Swathy, A review on Metallic Silver Nanoparticles, IOSR Journal of Pharmacy 4(7) (2014) 38-44.
Google Scholar
[14]
Z. Zhang, F. Zhou, E.J. Lavernia, On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction, Metall. Mater. Trans. A 34 (2003) 1349-1355.
DOI: 10.1007/s11661-003-0246-2
Google Scholar
[15]
Supriya R. Patade, Deepali D. Andhare, Prashant B. Kharat, Ashok V. Humbe, K.M. Jadhav, Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4(1≥x≥0) nanospinels, Chemical Physics Letters 745 (2020) 137240.
DOI: 10.1016/j.cplett.2020.137240
Google Scholar