[1]
X. Zou, Z. Yu, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev. 44 (2015) 5148-5180.
DOI: 10.1039/c4cs00448e
Google Scholar
[2]
T. Jia, Y. Dai, R. Wang, Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective, Renew. Sust. Energ. Rev. 88 (2018) 278-296.
DOI: 10.1016/j.rser.2018.02.008
Google Scholar
[3]
R. Bose, B. Patil, V.R. Jothi, T.H. Kim, P. Arunkumar, H. Ahn, S. Yi, Co3Se4 nanosheets embedded on N-CNT as an efficient electroactive material for hydrogen evolution and supercapacitor applications, J. Ind. Eng. Chem. 65 (2018) 62-71.
DOI: 10.1016/j.jiec.2018.04.013
Google Scholar
[4]
M. Ni, D.Y.C. Leung, M.K.H. Leung, K. Sumathy, An overview of hydrogen production from biomass, Fuel Process. Technol. 87 (2006) 461-472.
DOI: 10.1016/j.fuproc.2005.11.003
Google Scholar
[5]
A. Fujishima, and K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[6]
W. Xie, Z. Li, M. Shao, M. Wei, Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting, Front Chem. Sci. Eng. 12 (2018) 537-554.
DOI: 10.1007/s11705-018-1719-6
Google Scholar
[7]
A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrog. Energy. 42 (2017) 11053-11077.
DOI: 10.1016/j.ijhydene.2017.02.125
Google Scholar
[8]
Wang, Y. Chen, B. Zheng, F. Qi, J. He, Q. Li, Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution, J. Alloys Compd. 691 (2017) 698-704.
DOI: 10.1016/j.jallcom.2016.08.305
Google Scholar
[9]
Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, S.H. Yu, Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis, Nat. Commun. 9 (2018) 2533-2542.
DOI: 10.1038/s41467-018-04954-7
Google Scholar
[10]
L. Han, S. Dong, E. Wang, Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction, Adv. Mater, 28 (2016) 9266-9291.
DOI: 10.1002/adma.201602270
Google Scholar
[11]
W. Pei, S. Zhou, Y. Bai, J. Zhao, N-doped graphitic carbon materials hybridized with transition metals (compounds) for hydrogen evolution reaction: Understanding the synergistic effect from atomistic level, Carbon 133 (2018) 260-266.
DOI: 10.1016/j.carbon.2018.03.043
Google Scholar
[12]
Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Qiao, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS Nano. 8 (2014) 5290-5396.
DOI: 10.1021/nn501434a
Google Scholar
[13]
Y.F. Xu, M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Nickel/Nickel (II) Oxide Nanoparticles Anchored onto Cobalt (IV) Diselenide Nanobelts for the Electrochemical Production of Hydrogen, Angew. Chem. Int. Ed. 52 (2013) 8546-8551.
DOI: 10.1002/anie.201303495
Google Scholar
[14]
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, J. Am. Chem. Soc. 135 (2013) 10274-10277.
DOI: 10.1021/ja404523s
Google Scholar
[15]
M.Y. Song, H.Y. Park, D.S. Yang, D. Bhattacharjya, J.S. Yu, Seaweed-Derived Heteroatom-Doped Highly Porous Carbon as an Electrocatalyst for the Oxygen Reduction Reaction, ChemSusChem 7 (2014) 1755-1763.
DOI: 10.1002/cssc.201400049
Google Scholar
[16]
Y.L. Liu, C.X. Shi, X.Y. Xu, P.C. Sun, T.H. Chen, Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction, J. Power Sources 283 (2015) 389-396.
DOI: 10.1016/j.jpowsour.2015.02.151
Google Scholar
[17]
S.K. Kim, E. Jung, M.D. Goodman, K.S. Schweizer, N. Tatsuda, K. Yano, Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes, ACS Appl. Mater. Interfaces. 7 (2015) 9128-9133.
DOI: 10.1021/acsami.5b01147
Google Scholar
[18]
H. Sun, H. Quan, M. Pan, Z. Zhang, D. Chen, Nitrogen-doped hierarchically structured porous carbon as a bifunctional electrode material for oxygen reduction and supercapacitor, J. Alloys Compd. 826 (2020) 1-12.
DOI: 10.1016/j.jallcom.2020.154208
Google Scholar
[19]
Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors, Carbon 67 (2014) 119-127.
DOI: 10.1016/j.carbon.2013.09.070
Google Scholar
[20]
Z. Zeng, L. Yi, J. He, Q. Hu, M. Pan, Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions, J. Mater. Sci. 55 (2020) 4780-4791.
DOI: 10.1007/s10853-019-04327-5
Google Scholar
[21]
Z. Zhang, J. Sun, F. Wang, L. Dai, Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework, Angew. Chem. 130 (2018) 9038-9043.
DOI: 10.1002/anie.201804958
Google Scholar
[22]
C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries, Adv. Mater. 5 (2013) 4932-4937.
DOI: 10.1002/adma.201301870
Google Scholar
[23]
J. Shi, N. Yan, H. Cui, Y. Liu, Y. Weng, Sulfur doped microporous carbons for CO2 adsorption, J. Environ. Eng. 5 (2017) 4605-4611.
DOI: 10.1016/j.jece.2017.09.002
Google Scholar
[24]
Y.L. Liu, C.X. Shi, X.Y. Xu, P.C. Sun, T.H. Chen, Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction, J. Power Sources 283 (2015) 389-396.
DOI: 10.1016/j.jpowsour.2015.02.151
Google Scholar
[25]
W. Zhang, G. Zhao, T. Muschin, A. Bao. Nitrogen-doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surf. Interface Anal. 4 (2020), 1-8.
DOI: 10.1002/sia.6883
Google Scholar
[26]
S. Han, T. Hyeon, Simple silica-particle template synthesis of mesoporous carbons, ChemComm. 19 (1999) 1955-1956.
DOI: 10.1039/a905848f
Google Scholar
[27]
W. Zhang, Y. Bao, A. Bao, Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to CO2 capture. J. Environ. Chem. Eng. 8 (2020) 103732-103741.
DOI: 10.1016/j.jece.2020.103732
Google Scholar
[28]
Z. Lionet, S. Nishijima, T.H. Kim,Y. Horiuchi, S.W. Lee, M. Matsuoka, Bimetallic MOF-templated synthesis of alloy nanoparticle-embedded porous carbons for oxygen evolution and reduction reactions, Dalton Trans. 48 (2019) 13953-13959.
DOI: 10.1039/c9dt02943e
Google Scholar
[29]
K. Babeł, K. Jurewicz, KOH activated lignin based nanostructured carbon exhibiting high hydrogen electro-sorption, Carbon 46 (2008) 1948-1956.
DOI: 10.1016/j.carbon.2008.08.005
Google Scholar
[30]
H. Zhao, Z.P. Hu, Y.P. Zhu, L. Ge, Z.Y. Yuan, P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction, Chinese J. Catal. 40 (2019) 1366-1374.
DOI: 10.1016/s1872-2067(19)63363-2
Google Scholar
[31]
A.P. Katsoulidis, M.G. Kanatzidis, Phloroglucinol based microporous polymeric organic frameworks with -OH functional groups and high CO2 capture capacity, Chem. Mater. 23 (2011) 1818-1824.
DOI: 10.1021/cm103206x
Google Scholar
[32]
T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science 350 (2015) 1508-1513.
DOI: 10.1126/science.aab3798
Google Scholar
[33]
M. Li, X. Yin, L. Chen, M. Han, L. Cheng, L. Zhang, Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites, Ceram. Int. 42 (2016) 7099-7106.
DOI: 10.1016/j.ceramint.2016.01.098
Google Scholar
[34]
Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Qiao, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS Nano. 8 (2014) 5290-5396.
DOI: 10.1021/nn501434a
Google Scholar
[35]
Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction, Angew. Chem. Int. Ed. 53 (2014) 1-7.
DOI: 10.1002/anie.201410050
Google Scholar
[36]
W.F. Chen, K. Sasaki, C. Ma, A.I. Frenkel, N. Marinkovic, J.T. Muckerman, Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel Molybdenum Nitride Nanosheets, Angew. Chem. Int. Ed. 51 (2012) 1-6.
DOI: 10.1002/anie.201200699
Google Scholar