Synthesis of Nitrogen-Doped Hierarchical Porous Carbon Materials and its Catalytic Ability in Hydrogen Evolution Reaction

Article Preview

Abstract:

Hydrolysis for hydrogen production is one of the most efficient ways to produce hydrogen energy. In order to realize its wide application, people urgently need to find cheap and efficient metal-free electrocatalysts to replace the noble-metal electrocatalysts in hydrogen evolution reaction (HER). Here, N-doped hierarchical porous carbon materials were successfully fabricated without any template. We changed the nitrogen and carbon source needed to prepare the material and tested HER performance. In all samples, the ethylenediamine-based porous carbon material (NPC-2) compared with other nonmetallic heteroatom doped carbon materials and some traditional metallic catalysts exhibited outstanding HER performance and stability in acid solution. To achieve a 10 mA/cm2 HER current density, the nitrogen-doped hierarchical porous carbon materials (NPC-2) required an overpotential of 398 mV.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 323)

Pages:

56-65

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zou, Z. Yu, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev. 44 (2015) 5148-5180.

DOI: 10.1039/c4cs00448e

Google Scholar

[2] T. Jia, Y. Dai, R. Wang, Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective, Renew. Sust. Energ. Rev. 88 (2018) 278-296.

DOI: 10.1016/j.rser.2018.02.008

Google Scholar

[3] R. Bose, B. Patil, V.R. Jothi, T.H. Kim, P. Arunkumar, H. Ahn, S. Yi, Co3Se4 nanosheets embedded on N-CNT as an efficient electroactive material for hydrogen evolution and supercapacitor applications, J. Ind. Eng. Chem. 65 (2018) 62-71.

DOI: 10.1016/j.jiec.2018.04.013

Google Scholar

[4] M. Ni, D.Y.C. Leung, M.K.H. Leung, K. Sumathy, An overview of hydrogen production from biomass, Fuel Process. Technol. 87 (2006) 461-472.

DOI: 10.1016/j.fuproc.2005.11.003

Google Scholar

[5] A. Fujishima, and K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[6] W. Xie, Z. Li, M. Shao, M. Wei, Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting, Front Chem. Sci. Eng. 12 (2018) 537-554.

DOI: 10.1007/s11705-018-1719-6

Google Scholar

[7] A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrog. Energy. 42 (2017) 11053-11077.

DOI: 10.1016/j.ijhydene.2017.02.125

Google Scholar

[8] Wang, Y. Chen, B. Zheng, F. Qi, J. He, Q. Li, Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution, J. Alloys Compd. 691 (2017) 698-704.

DOI: 10.1016/j.jallcom.2016.08.305

Google Scholar

[9] Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, S.H. Yu, Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis, Nat. Commun. 9 (2018) 2533-2542.

DOI: 10.1038/s41467-018-04954-7

Google Scholar

[10] L. Han, S. Dong, E. Wang, Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction, Adv. Mater, 28 (2016) 9266-9291.

DOI: 10.1002/adma.201602270

Google Scholar

[11] W. Pei, S. Zhou, Y. Bai, J. Zhao, N-doped graphitic carbon materials hybridized with transition metals (compounds) for hydrogen evolution reaction: Understanding the synergistic effect from atomistic level, Carbon 133 (2018) 260-266.

DOI: 10.1016/j.carbon.2018.03.043

Google Scholar

[12] Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Qiao, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS Nano. 8 (2014) 5290-5396.

DOI: 10.1021/nn501434a

Google Scholar

[13] Y.F. Xu, M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Nickel/Nickel (II) Oxide Nanoparticles Anchored onto Cobalt (IV) Diselenide Nanobelts for the Electrochemical Production of Hydrogen, Angew. Chem. Int. Ed. 52 (2013) 8546-8551.

DOI: 10.1002/anie.201303495

Google Scholar

[14] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, J. Am. Chem. Soc. 135 (2013) 10274-10277.

DOI: 10.1021/ja404523s

Google Scholar

[15] M.Y. Song, H.Y. Park, D.S. Yang, D. Bhattacharjya, J.S. Yu, Seaweed-Derived Heteroatom-Doped Highly Porous Carbon as an Electrocatalyst for the Oxygen Reduction Reaction, ChemSusChem 7 (2014) 1755-1763.

DOI: 10.1002/cssc.201400049

Google Scholar

[16] Y.L. Liu, C.X. Shi, X.Y. Xu, P.C. Sun, T.H. Chen, Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction, J. Power Sources 283 (2015) 389-396.

DOI: 10.1016/j.jpowsour.2015.02.151

Google Scholar

[17] S.K. Kim, E. Jung, M.D. Goodman, K.S. Schweizer, N. Tatsuda, K. Yano, Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes, ACS Appl. Mater. Interfaces. 7 (2015) 9128-9133.

DOI: 10.1021/acsami.5b01147

Google Scholar

[18] H. Sun, H. Quan, M. Pan, Z. Zhang, D. Chen, Nitrogen-doped hierarchically structured porous carbon as a bifunctional electrode material for oxygen reduction and supercapacitor, J. Alloys Compd. 826 (2020) 1-12.

DOI: 10.1016/j.jallcom.2020.154208

Google Scholar

[19] Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors, Carbon 67 (2014) 119-127.

DOI: 10.1016/j.carbon.2013.09.070

Google Scholar

[20] Z. Zeng, L. Yi, J. He, Q. Hu, M. Pan, Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions, J. Mater. Sci. 55 (2020) 4780-4791.

DOI: 10.1007/s10853-019-04327-5

Google Scholar

[21] Z. Zhang, J. Sun, F. Wang, L. Dai, Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework, Angew. Chem. 130 (2018) 9038-9043.

DOI: 10.1002/anie.201804958

Google Scholar

[22] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries, Adv. Mater. 5 (2013) 4932-4937.

DOI: 10.1002/adma.201301870

Google Scholar

[23] J. Shi, N. Yan, H. Cui, Y. Liu, Y. Weng, Sulfur doped microporous carbons for CO2 adsorption, J. Environ. Eng. 5 (2017) 4605-4611.

DOI: 10.1016/j.jece.2017.09.002

Google Scholar

[24] Y.L. Liu, C.X. Shi, X.Y. Xu, P.C. Sun, T.H. Chen, Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction, J. Power Sources 283 (2015) 389-396.

DOI: 10.1016/j.jpowsour.2015.02.151

Google Scholar

[25] W. Zhang, G. Zhao, T. Muschin, A. Bao. Nitrogen-doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surf. Interface Anal. 4 (2020), 1-8.

DOI: 10.1002/sia.6883

Google Scholar

[26] S. Han, T. Hyeon, Simple silica-particle template synthesis of mesoporous carbons, ChemComm. 19 (1999) 1955-1956.

DOI: 10.1039/a905848f

Google Scholar

[27] W. Zhang, Y. Bao, A. Bao, Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to CO2 capture. J. Environ. Chem. Eng. 8 (2020) 103732-103741.

DOI: 10.1016/j.jece.2020.103732

Google Scholar

[28] Z. Lionet, S. Nishijima, T.H. Kim,Y. Horiuchi, S.W. Lee, M. Matsuoka, Bimetallic MOF-templated synthesis of alloy nanoparticle-embedded porous carbons for oxygen evolution and reduction reactions, Dalton Trans. 48 (2019) 13953-13959.

DOI: 10.1039/c9dt02943e

Google Scholar

[29] K. Babeł, K. Jurewicz, KOH activated lignin based nanostructured carbon exhibiting high hydrogen electro-sorption, Carbon 46 (2008) 1948-1956.

DOI: 10.1016/j.carbon.2008.08.005

Google Scholar

[30] H. Zhao, Z.P. Hu, Y.P. Zhu, L. Ge, Z.Y. Yuan, P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction, Chinese J. Catal. 40 (2019) 1366-1374.

DOI: 10.1016/s1872-2067(19)63363-2

Google Scholar

[31] A.P. Katsoulidis, M.G. Kanatzidis, Phloroglucinol based microporous polymeric organic frameworks with -OH functional groups and high CO2 capture capacity, Chem. Mater. 23 (2011) 1818-1824.

DOI: 10.1021/cm103206x

Google Scholar

[32] T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science 350 (2015) 1508-1513.

DOI: 10.1126/science.aab3798

Google Scholar

[33] M. Li, X. Yin, L. Chen, M. Han, L. Cheng, L. Zhang, Dielectric and electromagnetic wave absorption properties of reduced graphene oxide/barium aluminosilicate glass–ceramic composites, Ceram. Int. 42 (2016) 7099-7106.

DOI: 10.1016/j.ceramint.2016.01.098

Google Scholar

[34] Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Qiao, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS Nano. 8 (2014) 5290-5396.

DOI: 10.1021/nn501434a

Google Scholar

[35] Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction, Angew. Chem. Int. Ed. 53 (2014) 1-7.

DOI: 10.1002/anie.201410050

Google Scholar

[36] W.F. Chen, K. Sasaki, C. Ma, A.I. Frenkel, N. Marinkovic, J.T. Muckerman, Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel Molybdenum Nitride Nanosheets, Angew. Chem. Int. Ed. 51 (2012) 1-6.

DOI: 10.1002/anie.201200699

Google Scholar