[1]
Bula, R.J. Morrow, R.C. Tibbitts, T.W, Barta, Light-Emitting Diodes as A Radiation Source for Plants, Hortscience. 26(1991)203-205.
DOI: 10.21273/hortsci.26.2.203
Google Scholar
[2]
Yeh, N.Chung, J.P, High-brightness LEDs-Energy Efficient Lighting Sources and Their Potential in Indoor Plant Cultivation, Renew. Sustain. Energy Rev. 15(2011)3934-3945.
DOI: 10.1016/j.rser.2009.01.027
Google Scholar
[3]
Kang J,Zhang S.P,Liu Y. J, Light conversion technology used in the agricultural film, China Plastics. 14(2000)42-48 (in Chinese).
Google Scholar
[4]
Kreslavski, V.D, Fomina, I.R, Los, D.A, et al, Red and Near Infra-Red Signaling: Hypothesis and Perspectives, J.Photoch. Photobio. C.13(2012) 190-203.
DOI: 10.1016/j.jphotochemrev.2012.01.002
Google Scholar
[5]
Karu, T. I, Kolyakov, S.F, Exact Action Spectra for Cellular Responses Relevant to Phototherapy, Photomed. Laser Surg. 23(2005) 355-361.
DOI: 10.1089/pho.2005.23.355
Google Scholar
[6]
Whelan H. T, Smits J, R.L, Buchman, E.V, Whelan, N.T.J, Effect of NASA Light-Emitting Diode Irradiation on Wound Healing, J. Clin. Laser Med. Surg. 19(2001)305-314.
DOI: 10.1089/104454701753342758
Google Scholar
[7]
Eells, J.T, Henry, M.M, Wong-Riley, Buchmann, et al, Therapeutic Photobiomodulation for Methanol-Induced Retinal Toxicity, Proc. Natl. Acad. Sci. U.S.A. 100(2003) 3439-3444.
DOI: 10.1073/pnas.0534746100
Google Scholar
[8]
Jumpei Ueda et al, Broadband Near-Infrared Persistent Luminescence of Ba[Mg2Al2N4] with Eu2+ and Tm3+ after Red Light Charging, Journal of Materials Chemistry C. 2013, 00, 1-3.
Google Scholar
[9]
Chen L, Lin C, YehC, Liu R, Light converting inorganic phosphors for white light emitting diodes, Materials. 2010,3, 2172-2195.
DOI: 10.3390/ma3032172
Google Scholar
[10]
A. Speghini, F. Piccinelli, M. Bettinelli, Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family, Opt. Mater. 33 (3) (2011) 247–257.
DOI: 10.1016/j.optmat.2010.10.039
Google Scholar
[11]
A. Birkel, K.A. Denault, N.C. George, C.E. Doll, B. Héry, et al, Rapid microwave preparation of highly efficient Ce3+-Substituted garnet phosphors for solid state white lighting, Chem.Mater. 24 (6) (2012) 1198–1204.
DOI: 10.1021/cm3000238
Google Scholar
[12]
K. Mishra, S.K. Singh, A.K. Singh, M. Rai, B.K. Gupta, S.B. Rai, New perspective in garnet phosphor: low temperature synthesis, nanostructures, and observation of multimodal luminescence, Inorg. Mater. Appl. Res. 53 (18) (2014) 9561–9569.
DOI: 10.1021/ic500854k
Google Scholar
[13]
S. Liu, P. Sun, Y. F. Liu, T. L. Zhou, S. X. Li, et al, Warm White Light with a High Color Rendering Index from a Single Gd3Al4GaO12:Ce3+ Transparent Ceramic for High-Power LEDs and LDs, submitted to ACS Appl. Mater. Interfaces (2018).
DOI: 10.1021/acsami.8b18103.s001
Google Scholar
[14]
J. H. Li, J. Yan, D. W. Wen, W. U. Kan, et al, Advanced Red Phosphors for White Light-Emitting Diodes, J. Mater. Chem, 4(2016)8611-8623.
DOI: 10.1039/c6tc02695h
Google Scholar
[15]
Y. F. Liu, S. Liu, P. Sun, Y. b. Du, Transparent Ceramics Enabling High Luminous Flux and Efficacy for the Next-Generation High-Power LED Light submitted to ACS Appl. Mater. Interfaces(2019).
DOI: 10.1021/acsami.9b02703
Google Scholar
[16]
J. S. Zhong, D.Q. Chen, W. G. Zhao, Y. Zhou, H. Yu, et al, Garnet-based Li6CaLa2Sb2O12:Eu3+red phosphors:a potential color-converting material for warm white light-emitting diodes, J. Mater. Chem. C. 3(2015) 4500.
DOI: 10.1039/c5tc00708a
Google Scholar
[17]
L. q. Yao, Q. Y. Shao, X. X. Xu, Y. Dong, C. Liang, J. H. He, submitted to Ceramics International (2019).
Google Scholar
[18]
H. Lin, T. Yu, G. Bai, J. Hao, Enhanced energy transfer in Nd3+/Cr3+co-doped Ca3Ga2Ge3O12 phosphors with near-infrared and long-lasting luminescence properties, J. Mater. Chem. C, 4 (2016) 3396-3402.
DOI: 10.1039/c5tc04340a
Google Scholar
[19]
L. Zhou, P. A. Tanner, L. Ning, W. Zhou, H. Liang, L. Zheng, Spectral Properties and Energy Transfer between Ce3+and Yb3+ in the Ca3Sc2Si3O12 Host:Is It an Electron Transfer Mechanism?, J.Phys Chem.A.120(2016)5539-5548.
DOI: 10.1021/acs.jpca.6b04641.s001
Google Scholar
[20]
H. Hu, X. J. Wang, H. Ding, Preparation and luminescent properties of highly transparent Y3Ga5O12:M3+ (M=Dy, Cr) ceramics, J. Eur. Ceram. Soc,39(2019)5345–5349.
DOI: 10.1016/j.jeurceramsoc.2019.08.028
Google Scholar
[21]
J. Ueda, K. Kuroishi, and S. Tanabe, Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation, Appl. Phys. Express 7 (2014)062201.
DOI: 10.7567/apex.7.062201
Google Scholar
[22]
J. Ueda, K. Kuroishi, and S. Tanabe, Bright persistent ceramic phosphors of Ce3+-Cr3+codoped garnet able to store by blue light, Appl. Phys. Lett. 104 (2014)101904.
DOI: 10.1063/1.4868138
Google Scholar
[23]
Shannon, R. D, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. 32(1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[24]
Yeh, C. W. Chen, W. T. Liu, R. S. Hu, S. F. Sheu, H. S. Chen, J.M. Hintzen, Origin of Thermal Degradation of Sr2-xSi5N8: Eux Phosphors in Air for Light-Emitting Diodes, J. Am. Chem. Soc. 134(2012)14108-14117.
DOI: 10.1021/ja304754b
Google Scholar
[25]
Malysa, B. Meijerink, A. Jüstel, Temperature Dependent Cr3+ Photoluminescence in Garnets of The Type X3Sc2Ga3O12 (X = Lu, Y, Gd, La), J. Lumin. 202( 2018)523-531.
DOI: 10.1016/j.jlumin.2018.05.076
Google Scholar
[26]
Z. Zhang, Y. Grattan, K. T. V. Palmer, A. W, Temperature Dependence of Fluorescence Lifetime in Cr3+-Doped Insulating Crystals, Phys. Rev. B .48(1993)7772-7778.
Google Scholar
[27]
B.S. Ravikumar, H. Nagabhushana, S. C. Sharma, Y .S Vidya, Anantharaju, Calotropis Procera mediated combustion synthesis of ZnAl2O4:Cr3+ nanophosphors:structural and luminescence studies, Spectrochim. Acta A Mol. Biomol. Spectrosc.136 (2015) 1027–1037.
DOI: 10.1016/j.saa.2014.09.126
Google Scholar
[28]
B. Ma, Q.F. Guo, M. Xin,S. Molokeev, et al, Crystal structure and luminescence properties of green-emitting Sr1-xAl12O19:xEu2+ phosphors, Ceram. Int. 42 (2016) 5995–5999.
DOI: 10.1016/j.ceramint.2015.12.149
Google Scholar
[29]
A.K. Vishwakarma, M. Jayasimhadri, Significant enhancement in photoluminescent properties via flux assisted Eu3+ doped BaNb2O6 phosphor for white LEDs, J. Alloys Compd. 683(2016) 379–386.
DOI: 10.1016/j.jallcom.2016.05.052
Google Scholar
[30]
M. Liao, Z.F.M., S.A. Zhang, F.G. Wu, Z.G. Nie, Z.Q. Zheng, X. Feng, Q.T. Zhang, J. Q. Feng, D.Y. Zhu, A red phosphor Mg3Y2Ge3O12: Bi3+, Eu3+ with high brightness and excellent thermal stability of luminescence for white light-emitting diodes, J. Lumin. 210 (2019) 202–209.
DOI: 10.1016/j.jlumin.2019.02.038
Google Scholar
[31]
Yu, D.C Rabouw, F.T. Boon, W. Q Kieboom, Q. Y. Zhang, Insights into The Energy Transfer Mechanism in Ce3+-Yb3+ Codoped YAG Phosphors. Phys. Rev. B. 90(2014) 165126.
Google Scholar
[32]
L. Zhang, L.Zhang, S, et al, A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips, J. Mater. Chem. C 6(2018) 4967-4976.
DOI: 10.1039/c8tc01216d
Google Scholar