GAGG:Cr3+ Phosphors for Far-Infrared Light Emitting Diodes

Article Preview

Abstract:

Recently, Far-infrared Light Emitting Diodes have attracted considerable interest in the research field worldwide. Emerging light therapy requires effective red/far-infrared light resources in clinical and plant photomorphogenesis to target or promote the interaction of light with living organisms. Here, Gd3Al4GaO12:Cr3+ (hereinafter referred to as: GAGG:Cr3+) phosphor was synthesized by high-temperature solid-phase method, and the crystal structure, morphology, and luminescence properties of this series of phosphor samples were studied. Through X-ray powder diffraction to obtain pure phase GAGG:Cr3+ series phosphor. Under the excitation of 420nm blue light, a broad band emission from 640 to 850nm is obtained, which is the result of the transition of Cr3+ 4T24A2 level. A sharp emission peak at 693nm is the R line belonging to Cr3+ in Gd3Al4GaO12 garnet. R line is assigned to the spin-forbidden 2E→4A2 transitions of Cr3+ ions that occupy the ideal octahedral sites. As the Cr3+ doping concentration increases, the luminous intensity of the sample increases first and then decreases. When the doping concentration of Cr3+ is 0.1mol phosphor,the luminous intensity is strongest at one single broad peak at about 712nm. At 440k, the R sharp line (693nm) and broad band (712nm) emission intensity maintained 78.6% and 71.8% , compared to room temperature intensity, respectively. The change of fluorescence lifetime at different temperatures gives the mechanism of fluorescence change with temperature. The current exploration will pave a promising way to engineer GAGG:Cr3+ activated optoelectronic devices for all kinds of photobiological applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 323)

Pages:

66-75

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bula, R.J. Morrow, R.C. Tibbitts, T.W, Barta, Light-Emitting Diodes as A Radiation Source for Plants, Hortscience. 26(1991)203-205.

DOI: 10.21273/hortsci.26.2.203

Google Scholar

[2] Yeh, N.Chung, J.P, High-brightness LEDs-Energy Efficient Lighting Sources and Their Potential in Indoor Plant Cultivation, Renew. Sustain. Energy Rev. 15(2011)3934-3945.

DOI: 10.1016/j.rser.2009.01.027

Google Scholar

[3] Kang J,Zhang S.P,Liu Y. J, Light conversion technology used in the agricultural film, China Plastics. 14(2000)42-48 (in Chinese).

Google Scholar

[4] Kreslavski, V.D, Fomina, I.R, Los, D.A, et al, Red and Near Infra-Red Signaling: Hypothesis and Perspectives, J.Photoch. Photobio. C.13(2012) 190-203.

DOI: 10.1016/j.jphotochemrev.2012.01.002

Google Scholar

[5] Karu, T. I, Kolyakov, S.F, Exact Action Spectra for Cellular Responses Relevant to Phototherapy, Photomed. Laser Surg. 23(2005) 355-361.

DOI: 10.1089/pho.2005.23.355

Google Scholar

[6] Whelan H. T, Smits J, R.L, Buchman, E.V, Whelan, N.T.J, Effect of NASA Light-Emitting Diode Irradiation on Wound Healing, J. Clin. Laser Med. Surg. 19(2001)305-314.

DOI: 10.1089/104454701753342758

Google Scholar

[7] Eells, J.T, Henry, M.M, Wong-Riley, Buchmann, et al, Therapeutic Photobiomodulation for Methanol-Induced Retinal Toxicity, Proc. Natl. Acad. Sci. U.S.A. 100(2003) 3439-3444.

DOI: 10.1073/pnas.0534746100

Google Scholar

[8] Jumpei Ueda et al, Broadband Near-Infrared Persistent Luminescence of Ba[Mg2Al2N4] with Eu2+ and Tm3+ after Red Light Charging, Journal of Materials Chemistry C. 2013, 00, 1-3.

Google Scholar

[9] Chen L, Lin C, YehC, Liu R, Light converting inorganic phosphors for white light emitting diodes, Materials. 2010,3, 2172-2195.

DOI: 10.3390/ma3032172

Google Scholar

[10] A. Speghini, F. Piccinelli, M. Bettinelli, Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family, Opt. Mater. 33 (3) (2011) 247–257.

DOI: 10.1016/j.optmat.2010.10.039

Google Scholar

[11] A. Birkel, K.A. Denault, N.C. George, C.E. Doll, B. Héry, et al, Rapid microwave preparation of highly efficient Ce3+-Substituted garnet phosphors for solid state white lighting, Chem.Mater. 24 (6) (2012) 1198–1204.

DOI: 10.1021/cm3000238

Google Scholar

[12] K. Mishra, S.K. Singh, A.K. Singh, M. Rai, B.K. Gupta, S.B. Rai, New perspective in garnet phosphor: low temperature synthesis, nanostructures, and observation of multimodal luminescence, Inorg. Mater. Appl. Res. 53 (18) (2014) 9561–9569.

DOI: 10.1021/ic500854k

Google Scholar

[13] S. Liu, P. Sun, Y. F. Liu, T. L. Zhou, S. X. Li, et al, Warm White Light with a High Color Rendering Index from a Single Gd3Al4GaO12:Ce3+ Transparent Ceramic for High-Power LEDs and LDs, submitted to ACS Appl. Mater. Interfaces (2018).

DOI: 10.1021/acsami.8b18103.s001

Google Scholar

[14] J. H. Li, J. Yan, D. W. Wen, W. U. Kan, et al, Advanced Red Phosphors for White Light-Emitting Diodes, J. Mater. Chem, 4(2016)8611-8623.

DOI: 10.1039/c6tc02695h

Google Scholar

[15] Y. F. Liu, S. Liu, P. Sun, Y. b. Du, Transparent Ceramics Enabling High Luminous Flux and Efficacy for the Next-Generation High-Power LED Light submitted to ACS Appl. Mater. Interfaces(2019).

DOI: 10.1021/acsami.9b02703

Google Scholar

[16] J. S. Zhong, D.Q. Chen, W. G. Zhao, Y. Zhou, H. Yu, et al, Garnet-based Li6CaLa2Sb2O12:Eu3+red phosphors:a potential color-converting material for warm white light-emitting diodes, J. Mater. Chem. C. 3(2015) 4500.

DOI: 10.1039/c5tc00708a

Google Scholar

[17] L. q. Yao, Q. Y. Shao, X. X. Xu, Y. Dong, C. Liang, J. H. He, submitted to Ceramics International (2019).

Google Scholar

[18] H. Lin, T. Yu, G. Bai, J. Hao, Enhanced energy transfer in Nd3+/Cr3+co-doped Ca3Ga2Ge3O12 phosphors with near-infrared and long-lasting luminescence properties, J. Mater. Chem. C, 4 (2016) 3396-3402.

DOI: 10.1039/c5tc04340a

Google Scholar

[19] L. Zhou, P. A. Tanner, L. Ning, W. Zhou, H. Liang, L. Zheng, Spectral Properties and Energy Transfer between Ce3+and Yb3+ in the Ca3Sc2Si3O12 Host:Is It an Electron Transfer Mechanism?, J.Phys Chem.A.120(2016)5539-5548.

DOI: 10.1021/acs.jpca.6b04641.s001

Google Scholar

[20] H. Hu, X. J. Wang, H. Ding, Preparation and luminescent properties of highly transparent Y3Ga5O12:M3+ (M=Dy, Cr) ceramics, J. Eur. Ceram. Soc,39(2019)5345–5349.

DOI: 10.1016/j.jeurceramsoc.2019.08.028

Google Scholar

[21] J. Ueda, K. Kuroishi, and S. Tanabe, Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation, Appl. Phys. Express 7 (2014)062201.

DOI: 10.7567/apex.7.062201

Google Scholar

[22] J. Ueda, K. Kuroishi, and S. Tanabe, Bright persistent ceramic phosphors of Ce3+-Cr3+codoped garnet able to store by blue light, Appl. Phys. Lett. 104 (2014)101904.

DOI: 10.1063/1.4868138

Google Scholar

[23] Shannon, R. D, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. 32(1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[24] Yeh, C. W. Chen, W. T. Liu, R. S. Hu, S. F. Sheu, H. S. Chen, J.M. Hintzen, Origin of Thermal Degradation of Sr2-xSi5N8: Eux Phosphors in Air for Light-Emitting Diodes, J. Am. Chem. Soc. 134(2012)14108-14117.

DOI: 10.1021/ja304754b

Google Scholar

[25] Malysa, B. Meijerink, A. Jüstel, Temperature Dependent Cr3+ Photoluminescence in Garnets of The Type X3Sc2Ga3O12 (X = Lu, Y, Gd, La), J. Lumin. 202( 2018)523-531.

DOI: 10.1016/j.jlumin.2018.05.076

Google Scholar

[26] Z. Zhang, Y. Grattan, K. T. V. Palmer, A. W, Temperature Dependence of Fluorescence Lifetime in Cr3+-Doped Insulating Crystals, Phys. Rev. B .48(1993)7772-7778.

Google Scholar

[27] B.S. Ravikumar, H. Nagabhushana, S. C. Sharma, Y .S Vidya, Anantharaju, Calotropis Procera mediated combustion synthesis of ZnAl2O4:Cr3+ nanophosphors:structural and luminescence studies, Spectrochim. Acta A Mol. Biomol. Spectrosc.136 (2015) 1027–1037.

DOI: 10.1016/j.saa.2014.09.126

Google Scholar

[28] B. Ma, Q.F. Guo, M. Xin,S. Molokeev, et al, Crystal structure and luminescence properties of green-emitting Sr1-xAl12O19:xEu2+ phosphors, Ceram. Int. 42 (2016) 5995–5999.

DOI: 10.1016/j.ceramint.2015.12.149

Google Scholar

[29] A.K. Vishwakarma, M. Jayasimhadri, Significant enhancement in photoluminescent properties via flux assisted Eu3+ doped BaNb2O6 phosphor for white LEDs, J. Alloys Compd. 683(2016) 379–386.

DOI: 10.1016/j.jallcom.2016.05.052

Google Scholar

[30] M. Liao, Z.F.M., S.A. Zhang, F.G. Wu, Z.G. Nie, Z.Q. Zheng, X. Feng, Q.T. Zhang, J. Q. Feng, D.Y. Zhu, A red phosphor Mg3Y2Ge3O12: Bi3+, Eu3+ with high brightness and excellent thermal stability of luminescence for white light-emitting diodes, J. Lumin. 210 (2019) 202–209.

DOI: 10.1016/j.jlumin.2019.02.038

Google Scholar

[31] Yu, D.C Rabouw, F.T. Boon, W. Q Kieboom, Q. Y. Zhang, Insights into The Energy Transfer Mechanism in Ce3+-Yb3+ Codoped YAG Phosphors. Phys. Rev. B. 90(2014) 165126.

Google Scholar

[32] L. Zhang, L.Zhang, S, et al, A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips, J. Mater. Chem. C 6(2018) 4967-4976.

DOI: 10.1039/c8tc01216d

Google Scholar