Solid State Phenomena Vol. 323

Paper Title Page

Abstract: Hydrothermal water treatments of silver acetate (CH3COOAg) were investigated to reveal the factors controlling the formation of silver nanoparticles (AgNPs) with uniform size distribution. The effects of reaction time and concentration of silver acetate solution on the synthesis of Ag nanoparticles were studied, and the fabricated products were characterized. The hydrothermal water treatments of CH3COOAg were carried out between the temperatures of 250 - 450 °C in a batch reactor. In supercritical water regions, at 400 °C and a pressure of 31.5 MPa, silver particles are rapidly synthesized due to reaction rate increases at a low dielectric constant of supercritical water. The preparation of the silver particles with 30-80 nm in size showed a highly crystalline structure identified by XRD and TEM observations.
1
Abstract: With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.
8
Abstract: We have calculated the energies of excited states for the He, Li, and Be atoms by the time dependent self-consistent Kohn Sham equation using the Coulomb Wave Function Discrete Variable Representation CWDVR) approach. The CWDVR approach was used the uniform and optimal spatial grid discretization to the solution of the Kohn-Sham equation for the excited states of atoms. Our results suggest that the CWDVR approach is an efficient and precise solutions of excited-state energies of atoms. We have shown that the calculated electronic energies of excited states for the He, Li, and Be atoms agree with the other researcher values.
14
Abstract: Acid activation is the most commonly used method to enhance the chemical and physical properties of clay minerals. Porous structure formation behavior depends on the crystal structure of clay minerals. Within the same structure of clay minerals, their resistance to acid also varies. Acid leaching has been used to increase the surface area of clay minerals and obtain solids with high porosity and many acidic sites. This paper is focused on the results of acid leaching of Mongolian clay minerals (montmorillonite and muscovite). Both clay minerals belong to a group of phyllosilicates with the 2:1 crystal structure. The influence of acid concentration and leaching time on the porous properties of silica was studied. Initially, the montmorillonite was pre-treated by a simple physical purification methods. The montmorillonite and muscovite were acid leached by a 10% hydrochloric acid solution in an autoclave at 120°C for 10h. X-ray diffraction (XRD), X-ray fluorescence analysis (XRF), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and the surface area used for characterization of the raw and leached samples. The surface area of leached montmorillonite increased up to 77% and muscovite up to 63%. Clay mineral’s swelling character and isomorphic substitution of the octahedral layer show the main influence on porous structure formation.
21
Abstract: In the present work, the extraction of Mongolian Baganuur coal in solvents as pyridine and ionic liquid with 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) anion was first applied. The as recieved coal, its extracts and insoluble residues were then characterized using the Fourier transform infrared (FTIR) spectroscopy. The obtained FTIR spectra have revealed many new features in the field of coal study. An appearance or sharpening of the particular bands after the chemical treatment allow a determination of inactive or weak fundamental vibrations precisely. Some emphasis are as follows, substantial quantitative change, the integrated area decrease of water molecule band at 3260 cm−1 comparing to as received sample and ionic liquid treated extract, can be seen for the extract spectrum in the pyridine treatment. Pyridine react to coal structure particularly in long-wave frequency zone means very susceptible to the oxygen containing functional group. Upon interaction between acidic group of the coal and the basic solvent as pyridine, the inter-fragment hydrogen and ester bonding in the coal structure is breaking, thus increasing the solubility of the individual fragments via producing new components. Towards forming H bond in the short wave zone Cl− anion shows a strong effect on the coal molec-ular structure. A stabilization of hydrogen bonds show well fluidization and a strong intermolecular interaction of the process via its powerful spectral intensity that is followed many new bands and con-siderable strengthening of band spectral integral area in this frequency region. In long-wave vibrational region there are appearances of many new bands, shift in frequency and depletion of the as recieved coal bands. [Bmim]Cl treatment exhibits the highest effect of the disruption on the carboxylic acids dimer.
28
Abstract: The presented study in the field of optical area is about receiving polymer new materials in the way of doping a small amount of fullerene С60. Under the method of preparing samples it is revealed characteristics of an interaction between polymer components and doping materials. Significant absorption of ultraviolet radiation by studied samples at the certain concentration of the doping material is presented in the result of the optical study. It is shown that metal-fullerene nanostructures which are on the polymer surface call surface resonance of plasmon absorption.
42
Abstract: Silicon-rich silicon nitride thin films are prepared on P-type monocrystalline silicon wafer (100) and glass substrate by plasma chemical vapor deposition with reaction gas sources SiH4 and NH3. The deposited samples are thermally annealed from 600°C to 1000°C in an atmosphere furnace filled with high purity nitrogen. The annealing time is 60 minutes. Fourier transform infrared spectroscopy (FTIR) is carried out to investigate the bonding configurations in the films. The results show that the Si-H bond and N-H bond decrease with the increase of annealing temperature, and completely disappear at the annealing temperature of 900°C. But the Si-N bond is enhanced with the increase of annealing temperature, and the blue shift occurs, then Si content in the film increases. The Raman Spectra show that the amorphous Si Raman peak appears at 480 cm-1 in the film at 700°C. The Raman spectra of the films annealed at 1000 °C is fitted with two peaks, and a peak at 497 cm -1 is found, which indicated that the Si phase in the films changed from amorphous to crystalline with the increase of annealing temperature. The experiment also analyses the luminescence properties of the samples through PL spectrum, and it is found that there are five luminescence peaks in each sample under different annealing temperature. Based on the analysis of Raman spectrum and FTIR spectrum, the PL peak of amorphous silicon quantum dots appears at the wavelength range of 525-555nm, and the other four PL peaks are all from the defect state luminescence in the thin films, and the amorphous silicon quantum dot size is calculated according to the formula.
48
Abstract: Hydrolysis for hydrogen production is one of the most efficient ways to produce hydrogen energy. In order to realize its wide application, people urgently need to find cheap and efficient metal-free electrocatalysts to replace the noble-metal electrocatalysts in hydrogen evolution reaction (HER). Here, N-doped hierarchical porous carbon materials were successfully fabricated without any template. We changed the nitrogen and carbon source needed to prepare the material and tested HER performance. In all samples, the ethylenediamine-based porous carbon material (NPC-2) compared with other nonmetallic heteroatom doped carbon materials and some traditional metallic catalysts exhibited outstanding HER performance and stability in acid solution. To achieve a 10 mA/cm2 HER current density, the nitrogen-doped hierarchical porous carbon materials (NPC-2) required an overpotential of 398 mV.
56
Abstract: Recently, Far-infrared Light Emitting Diodes have attracted considerable interest in the research field worldwide. Emerging light therapy requires effective red/far-infrared light resources in clinical and plant photomorphogenesis to target or promote the interaction of light with living organisms. Here, Gd3Al4GaO12:Cr3+ (hereinafter referred to as: GAGG:Cr3+) phosphor was synthesized by high-temperature solid-phase method, and the crystal structure, morphology, and luminescence properties of this series of phosphor samples were studied. Through X-ray powder diffraction to obtain pure phase GAGG:Cr3+ series phosphor. Under the excitation of 420nm blue light, a broad band emission from 640 to 850nm is obtained, which is the result of the transition of Cr3+ 4T24A2 level. A sharp emission peak at 693nm is the R line belonging to Cr3+ in Gd3Al4GaO12 garnet. R line is assigned to the spin-forbidden 2E→4A2 transitions of Cr3+ ions that occupy the ideal octahedral sites. As the Cr3+ doping concentration increases, the luminous intensity of the sample increases first and then decreases. When the doping concentration of Cr3+ is 0.1mol phosphor,the luminous intensity is strongest at one single broad peak at about 712nm. At 440k, the R sharp line (693nm) and broad band (712nm) emission intensity maintained 78.6% and 71.8% , compared to room temperature intensity, respectively. The change of fluorescence lifetime at different temperatures gives the mechanism of fluorescence change with temperature. The current exploration will pave a promising way to engineer GAGG:Cr3+ activated optoelectronic devices for all kinds of photobiological applications.
66

Showing 1 to 10 of 22 Paper Titles