Rapid Removal of Methylene Blue in Water Using Polymer-Based Biochar Nanocomposite-Coated Filters

Article Preview

Abstract:

In this study, the effectiveness of novel nanocomposite-coated filters consisting of biochar (BC) functionalized with sodium alginate (SA) and poly (vinyl alcohol) (PVA) was investigated for methylene (MB) blue removal. The filters were fabricated via a dip-coating method and SEM and FTIR spectroscopy confirmed the successful coating of the filters. The impact of the nanocomposite formulation and the operating parameters (initial pH and MB concentration) on the performance of the coated filters were studied. A nanocomposite composition consisting of 1.0 wt.% SA, 2.0 wt.% PVA, and 1000 ppm BC were found to be optimum, reaching as high as 96.51% MB removal. The fabricated filters were determined to be robust over a wide range of pH and initial MB concentrations. The Sips isotherm model proved to be the best-fit model for MB adsorption, where chemisorption dominates at low MB concentrations, while physisorption dominates at high MB concentrations. The filters have a maximum sorption capacity of 54.5198 mg g-1 and showed good reusability. Overall, our synthesized SA/PVA/BC-coated filters can be used to effectively remove dyes in wastewater over a wide range of operating conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

116-124

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol. 16 (2019) 1193–1226.

DOI: 10.1007/s13762-018-2130-z

Google Scholar

[2] B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innov. 3 (2019) 275–290.

DOI: 10.1016/j.biori.2019.09.001

Google Scholar

[3] K.A. Adegoke, O.S. Bello, Dye sequestration using agricultural wastes as adsorbents, Water Resour. Ind. 12 (2015) 8–24.

DOI: 10.1016/j.wri.2015.09.002

Google Scholar

[4] G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon, J. Environ. Manage. 102 (2012) 148–164.

DOI: 10.1016/j.jenvman.2012.02.021

Google Scholar

[5] P.K. Yeow, S.W. Wong, T. Hadibarata, Removal of azo and anthraquinone dye by plant biomass as adsorbent – a review, Biointerface Res. Appl. Chem. 11 (2021) 8218–8232.

DOI: 10.33263/briac111.82188232

Google Scholar

[6] M.R. Esfahani, S.A. Aktij, Z. Dabaghian, M.D. Firouzjaei, A. Rahimpour, J. Eke, I.C. Escobar, M. Abolhassani, L.F. Greenlee, A.R. Esfahani, A. Sadmani, N. Koutahzadeh, Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications, Sep. Purif. Technol. 213 (2019) 465–499.

DOI: 10.1016/j.seppur.2018.12.050

Google Scholar

[7] Y. Wen, J. Yuan, X. Ma, S. Wang, Y. Liu, Polymeric nanocomposite membranes for water treatment: a review, Environ. Chem. Lett. 17 (2019) 1539–1551.

DOI: 10.1007/s10311-019-00895-9

Google Scholar

[8] P.R. Yaashikaa, P.S. Kumar, S. Varjani, A. Saravanan, A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy, Biotechnol. Reports. 28 (2020) e00570.

DOI: 10.1016/j.btre.2020.e00570

Google Scholar

[9] A. Fdez-Sanromán, M. Pazos, E. Rosales, M.A. Sanromán, Unravelling the environmental application of biochar as low-cost biosorbent: A review, Appl. Sci. 10 (2020) 1–22.

DOI: 10.3390/app10217810

Google Scholar

[10] H.B. Quesada, T.P. de Araújo, D.T. Vareschini, M.A.S.D. de Barros, R.G. Gomes, R. Bergamasco, Chitosan, alginate and other macromolecules as activated carbon immobilizing agents: A review on composite adsorbents for the removal of water contaminants, Int. J. Biol. Macromol. 164 (2020) 2535–2549.

DOI: 10.1016/j.ijbiomac.2020.08.118

Google Scholar

[11] T. Ramdhan, S.H. Ching, S. Prakash, B. Bhandari, Physical and mechanical properties of alginate based composite gels, Trends Food Sci. Technol. 106 (2020) 150–159.

DOI: 10.1016/j.tifs.2020.10.002

Google Scholar

[12] C.F. Mok, Y.C. Ching, F. Muhamad, N.A. Abu Osman, N.D. Hai, C.R. Che Hassan, Adsorption of Dyes Using Poly(vinyl alcohol) (PVA) and PVA-Based Polymer Composite Adsorbents: A Review, J. Polym. Environ. 28 (2020) 775–793.

DOI: 10.1007/s10924-020-01656-4

Google Scholar

[13] K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms, Sep. Purif. Technol. 150 (2015) 229–242.

DOI: 10.1016/j.seppur.2015.07.009

Google Scholar

[14] Y. Yue, J. Han, G. Han, A.D. French, Y. Qi, Q. Wu, Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization, Carbohydr. Polym. 147 (2016) 155–164.

DOI: 10.1016/j.carbpol.2016.04.005

Google Scholar

[15] Y. Tong, P.J. McNamara, B.K. Mayer, Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol. 5 (2019) 821–838.

DOI: 10.1039/c8ew00938d

Google Scholar

[16] N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and Interpretation of Adsorption Isotherms, J. Chem. 2017 (2017) 1–11.

DOI: 10.1155/2017/3039817

Google Scholar

[17] S. Majumdar, U. Saikia, D. Mahanta, Polyaniline-Coated Filter Papers: Cost Effective Hybrid Materials for Adsorption of Dyes, J. Chem. Eng. Data. 60 (2015) 3382–3391.

DOI: 10.1021/acs.jced.5b00645

Google Scholar

[18] A. Onur, K. Shanmugam, A. Ng, G. Garnier, W. Batchelor, Cellulose fibre- perlite depth filters with cellulose nanofibre top coating for improved filtration performance, Colloids Surfaces A Physicochem. Eng. Asp. 583 (2019) 123997.

DOI: 10.1016/j.colsurfa.2019.123997

Google Scholar

[19] C. Vilela, C. Moreirinha, A. Almeida, A.J.D. Silvestre, C.S.R. Freire, Zwitterionic nanocellulose-based membranes for organic dye removal, Materials (Basel). 12 (2019).

DOI: 10.3390/ma12091404

Google Scholar

[20] G. Shi, C. Ruan, S. He, H. Pan, G. Chen, Y. Ma, H. Dai, X. Chen, X. Yang, Zr-based MOF @ carboxymethylated filter paper: Insight into construction and methylene blue removal mechanism, Colloids Surfaces A Physicochem. Eng. Asp. 613 (2020) 126053.

DOI: 10.1016/j.colsurfa.2020.126053

Google Scholar

[21] L. Yang, C. Chen, Y. Hu, F. Wei, J. Cui, Y. Zhao, X. Xu, X. Chen, D. Sun, Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation, J. Colloid Interface Sci. 562 (2020) 21–28.

DOI: 10.1016/j.jcis.2019.12.013

Google Scholar

[22] Q.Q. Zhang, Y.J. Zhu, J. Wu, Y.T. Shao, L.Y. Dong, A new kind of filter paper comprising ultralong hydroxyapatite nanowires and double metal oxide nanosheets for high-performance dye separation, J. Colloid Interface Sci. 575 (2020) 78–87.

DOI: 10.1016/j.jcis.2020.04.079

Google Scholar