Value-Added Utilization of Banana Peel (Musa acuminata): Adsorption Fatty Acid and Extending the Life of Activated Carbon

Article Preview

Abstract:

Cooking oil saturation due to frequent use for frying will result in a higher fatty acid content. Activated carbon made from the banana peel (Musa acuminata) with micro-mesoporous specifications can absorb free fatty acids. Banana peels are pyrolyzed into charcoal then activated alkaline at a temperature of 650°C. Then the activated carbon is washed and mashed to obtain activated carbon powder as an adsorbent by batch. FTIR carried out adsorption analysis on cooking oil to reduce carboxylic acid in used cooking oil. The regeneration process is carried out using surfactants to save on the use of necessary materials so that they need to be recycled. The experimental results based on isothermic equilibrium show that the Freundlich model can describe the adsorption process well at 28°C with a maximum adsorption capacity of 10 mg/g. The lifespan of activated carbon can only be extended once regeneration, reaching an adsorption capacity of 65% of fresh activated carbon's ability.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 324)

Pages:

125-130

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Rahayu, Supriyatin, and A. Bintari, in: AIP Conference Proceedings Vol. 2019 (2018).

Google Scholar

[2] V. Chairgulprasert and P. Madlah: Sci. Technol. Asia Vol. 23 (2018), p.1.

Google Scholar

[3] M. F. Elkady, A. Zaatout, and O. Balbaa: J. Chem. Vol. 2015 (2015) , p.1.

Google Scholar

[4] S. Hong, J. Kim, J. Kim, J.W. Kang, Y. Lee, S. Hong, J. Kim, J. Kim, J.W. Kang, and Y. Lee: Sep. Sci. Technol. Vol. 45 (2010), p.1139.

Google Scholar

[5] Zulkifli, T. Rihayat, Suryani, Facraniah, U. Habibah, N. Audina, T. Fauzi, Nurhanifa, Zaimahwati, and R. Rosalina, in: AIP Conference Proceedings Vol. 2049 (2019).

DOI: 10.1063/1.5082427

Google Scholar

[6] W. D. P. Rengga, A. Seubsai, S. Roddecha, S. Y. N. Azizah, and D. F. Rosada, in: IOP Conference Series: Earth and Environmental Science Vol. 700 (2021).

DOI: 10.1088/1755-1315/700/1/012035

Google Scholar

[7] N. Masoudian, M. Rajabi, and M. Ghaedi: Polyhedron Vol. 173 (2019), p.114105.

Google Scholar

[8] I. Kabenge, G. Omulo, N. Banadda, J. Seay, A. Zziwa, and N. Kiggundu: J. Sustain. Dev. Vol. 11 (2018) , p.14.

DOI: 10.5539/jsd.v11n2p14

Google Scholar

[9] R. Chen, L. Li, Z. Liu, M. Lu, C. Wang, H. Li, W. Ma, and S. Wang:J. Air Waste Manage. Assoc. (2017).

Google Scholar

[10] E. M. Mistar, S. Ahmad, A. Muslim, T. Alfatah, and M. D. Supardan, in: IOP Conference Series: Materials Science and Engineering (2018).

Google Scholar

[11] A. W. H. Cheung, C. L. S. Chan, K. S. T. Lau, S. J. Allen, and G. McKay: HKIE Transactions Vol. 24 (2017), p.133.

Google Scholar

[12] N. A. Rashidi and S. Yusup, Chem. Eng. J., Vol. 314 (2016), p.277.

Google Scholar

[13] A. Sapora, M. Codegone, G. Barbero, and L. R. Evangelista: J. Phys. A Math. Theor. Vol. 47 (2014).

Google Scholar

[14] S. H. Han and R. K. Mallampalli: Ann. Am. Thorac. Soc. Vol. 12 (2015), p.765.

Google Scholar

[15] J. N. Nsami and J. K. Mbadcam: J. Chem. Vol. 2013 (2013), p.1–7.

Google Scholar

[16] R. A. Kristianti, T. Hadibarata, and H. M. S. Al Qahtani: Biointerface Res. Appl. Chem. Vol. 9 (2019), p.4217.

Google Scholar

[17] N. Yadav, D. N. Maddheshiaya, S. Rawat, and J. Singh: Environ. Eng. Res. Vol. 25 (2020), p.742.

Google Scholar

[18] O. Awogbemi, E. I. Onuh, and C. A. Komolafe, in: International Conference on Energy and Sustainable Environment Vol 331 (2019).

Google Scholar

[19] J. E. Park, G. B. Lee, B. U. Hong, and S. Y. Hwang: Appl. Sci. Vol. 9 (2019), pp.1-10.

Google Scholar